Advertisement

Metal Regulation of Metallothionein Gene Transcription in Mammals

  • P. Remondelli
  • O. Moltedo
  • M. C. Pascale
  • Arturo Leone
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)

Abstract

Heavy metals play their essential role as nutrients and as cofactors for a variety of enzymes and metallo-proteins (O’Halloran, 1989). Metals are normally present in trace amount in the cell but these levels can increase consistently following environmental or nutritional changes. To avoid toxic effects and death due to metal overload, cells have de-veloped during evolution several biochemical and molecular mechanisms which regulate the metal uptake, its intracellular distribution and elimination from the intracellular compartments. Therefore, it appears that two main processes control intracellular metal ho-meostasis, the first based on the regulation of the enzymatic activities of metal pumps and transporters, the second activating gene transcription.

Keywords

Candida Glabrata Metal Regulation Intracellular Metal Metal Response Element Metal Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abshire, M.K., Buzard, G.S., Shiraishi, N., and Waalkes, M.P. (1996). Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene. J. Toxicol. Environ. Health 48, 359–377PubMedCrossRefGoogle Scholar
  2. Angel, P., M. Imagawa, R. Chiu, B. Stein, R. J. Imbra, H. J. Rahmsdorf, C. Jonat, P. Herrlich, and Karin, M. (1987). Phorbol ester inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739.PubMedCrossRefGoogle Scholar
  3. Bremner, I., and J. H. Beattie. (1990). Metallothionein and the trace minerals. Ann. Rev. Nutr. 10, 63–83.CrossRefGoogle Scholar
  4. Cavigelli, M., Li, W.W., Lin, A., Su, B., Yoshioka, K., and Karin, M. (1996). The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phospatase. EMBO J. 15, 6269–6279.PubMedGoogle Scholar
  5. Culotta, V. C., and Hamer, D. H.. (1989). Fine mapping of a mouse metallothionein gene metal response element. Mol. Cell. Biol. 9, 1376–1380.PubMedGoogle Scholar
  6. Czupryn, M., Brown, W. E., and Vallée, B. L. (1992). Zinc rapidly induces a metal response element binding factor. Proc. Natl. Acad. Sci. USA 89, 10395–10399.PubMedCrossRefGoogle Scholar
  7. DiDonato, M., and Sarkar, B. (1997). Copper transport and its alterations in Menkes and Wilson deseases. Biochim. Biophys. Acta 1360(1), 3–16.PubMedCrossRefGoogle Scholar
  8. Davis, R.J. (1995). Transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467.PubMedCrossRefGoogle Scholar
  9. Elledge, S. J., J. T. Mulligan, S. W. Ramer, M. Spottswood, and Davis, R. W. (1991). LambdaYES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. USA 88, 1731–1735.PubMedCrossRefGoogle Scholar
  10. Fürst, P., S. Hu, R. Hackett, and Hamer, D. (1988). Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55, 705–717.PubMedCrossRefGoogle Scholar
  11. Garner, M., and Revzin, A. (1981). A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the E. coli lactose regulatory system. Nucl. Acids Res. 9, 3047–3060.PubMedCrossRefGoogle Scholar
  12. Gibson, T. J., Postma, J. P. M., Brown, R. S. and Argos, P. (1988) A model for tertiary structure of the 28 residue DNA-binding motif (‘zinc finger’) common to many eukaryotic transcriptional regulatory proteins. Protein Engineering 2, 209–218.PubMedCrossRefGoogle Scholar
  13. Imbert, J., Zafarullah, M., Culotta, V. C., Gedamu, L., and Hamer, D. (1989). Transcription factor MBF-I interacts with metal regulatory elements of higher eucaryotic metallothionein genes. Mol. Cell. Biol. 9, 5315–5323.PubMedGoogle Scholar
  14. Inouye, C., Remondelli, P., Karin, M. and Elledge, S. (1994). Isolation of a metal response element binding protein using a novel expression cloning procedure: the one hybrid system. DNA Cell Biol. 13, 731–742.PubMedCrossRefGoogle Scholar
  15. Jin, P., and Ringertz, N.R. (1990). Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts. J. Biol. Chem. 265, 14061–14064.PubMedGoogle Scholar
  16. Jones, K.A. and Tjian, R. (1985). Spl binds to promoter sequences and activates herpes simplex virus ‘immediate-early’ gene transcription in vitro. Nature (London) 317, 179–182.CrossRefGoogle Scholar
  17. Kägi, J. H. R. (1991). Overview of metallothionein. Methods Enzymol. 205, 613–626.PubMedCrossRefGoogle Scholar
  18. Karin, M., and Herschman, H. R. (1980). Characterization of metallothioneins induced in HeLa cells by dexamethasone and zinc. Eur. J. Biochem. 107, 395–401.PubMedCrossRefGoogle Scholar
  19. Karin, M., and Richards, R. I. (1982). Human metallothionein genes: primary structure of the metallothionein-II gene and a related processed gene. Nature 299, 797–802.PubMedCrossRefGoogle Scholar
  20. Karin, M., Najaran, R., Haslinger, A., Valenzuela, P., Welch, J. and Fogel, S. (1984a). Primary structure and transcription of an amplified genetic locus: the CUPl locus in yeast. Proc. Nat. Acad. Sci. USA 81, 337–341.PubMedCrossRefGoogle Scholar
  21. Karin, M., Haslinger, A., Holtgreve, H., Cathala, G., Slater, E., and Baxter, J.D. (1984b). Activation of a heterologous promoter in response to dexamethasone and cadmium by metallothionein gene 5′-flanking DNA. Cell 36,371–379.PubMedCrossRefGoogle Scholar
  22. Karin, M., Haslinger, A., Heguy, A., Dietlin, T., and Cooke, T. (1987). Metal-responsive elements act as positive modulators of human metallothionein-IIA enhancer activity. Mol. Cell. Biol. 7, 606–613.PubMedGoogle Scholar
  23. Koizumi, S., Suzuki, K., and Otsuka, K. (1992). A nuclear factor that recognizes the metal-responsive element of the human metallothionein IIa gene. J. Biol. Chem. 267, 18659–18664.PubMedGoogle Scholar
  24. Labbè, S., Prévost, J., Remondelli, P., Leone, A., and Sèguin, C. (1991). A nuclear factor binds to the metal regulatory elements of the mouse gene encoding metallothionein-I. Nucl. Ac. Res. 19, 4225–4231.CrossRefGoogle Scholar
  25. Lim, L., Manser, E., Leung, T., and Hall, C. (1996). Regulation of phosphorilation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorilation signalling pathways. Eur. J. Biochem. 242, 171–185.PubMedCrossRefGoogle Scholar
  26. Minichiello, L., Remondelli, P., Cigliano, S., Bonatti, S. and Leone, A. (1994). Interactions of nuclear proteins from uninduced, induced and superinduced HeLa cells with the metal regulatory elements MRE 3 and 4 of the human metallothionein 11a encoding gene. Gene 143, 289–294.PubMedCrossRefGoogle Scholar
  27. Monaco, A.P., and Chelly, J. (1995). Menkes and Wilson deseases. Adv. Genet. 33, 233–253.PubMedCrossRefGoogle Scholar
  28. Morimoto, R.I. (1993). Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410.PubMedCrossRefGoogle Scholar
  29. Mueller, P. R., Salser, S. J., and Wold, B. (1988). Constitutive and metal-inducible protein: DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 2, 412–427.PubMedCrossRefGoogle Scholar
  30. O’Halloran, T.V. (1989) in Metal Ion in Biological Systems (Siegel, H. and Sigel, A., eds.) Mercel Dekker, Inc. New York, pp. 105–146.Google Scholar
  31. Palmiter, R. D. (1994). Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a costitutively active transcription factor, MTF1. Proc. Natl. Acad. Sci. USA 91, 1219–1223. EMBO J. 15, 1784-1791PubMedCrossRefGoogle Scholar
  32. Palmiter, R.D., Cole, T.B., and Findley, S.D. (1996). ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15, 1784–1791.PubMedGoogle Scholar
  33. Palmiter, R.D., Cole, T.B., Quaife, C.R, and Findley, S.D. (1996). ZnT-3 a putative tansporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 14934–14939.PubMedCrossRefGoogle Scholar
  34. Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., and Schaffner, W. (1993). Cloned transcription factor MTF-I activates the mouse metallothionein I promoter. EMBO J. 12, 1355–1362.PubMedGoogle Scholar
  35. Remondelli, P., Pascale, M.C., and Leone, A. (1988). Effects of zinc, copper and cadmium on protein biosynthesis of two differentiated human hepatoma cell lines. In Metal Ion Homeostasis: Molecular Biology and Chemistry (D. Winge and D.H. Hamer Eds.) UCLA Symposia on Molecular and Cellular Biology; Alan R.Liss, Inc., New York, NY, U.S.A. 98, 56–69.Google Scholar
  36. Remondelli, P. and Leone, A. (1997). Interactions of the zinc regulated transcription factor (ZiRFl) with the the mouse MT Ia promoter. Biochem. J. 323, 79–80.PubMedGoogle Scholar
  37. Remondelli, P., Moltedo, O. and A. Leone (1997). Regulation of ZiRF1 and basal SP1 transcription factors MRE-binding activity by transition metals. FEBS Letters 416, 254–258.PubMedCrossRefGoogle Scholar
  38. Searle, P. (1990). Zinc dependent binding of a liver nuclear factor to metal response element MREa of the mouse metallothionein-I gene and variant sequences. Nucl. Acids Res. 18, 4683–4690.PubMedCrossRefGoogle Scholar
  39. Searle, P. F., Davidson, B.L., Stuart, G.W., Wilkie, T.M., Norstedt, G., and Palmiter, R.D. (1984). Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol. Cell. Biol. 4, 1221–1230.PubMedGoogle Scholar
  40. Sèguin, C. (1991). A nuclear factor requires Zn2+ to bind a regulatory MRE element of the mouse gene encoding metallothionein-1. Gene 97, 295–300.PubMedCrossRefGoogle Scholar
  41. Sèguin, C., and Prevost, J. (1988). Detection of a nuclear protein that interacts with a metal regulatory element of the mouse metallothionein I gene. Nucl. Acids Res. 16, 10547–10560.PubMedCrossRefGoogle Scholar
  42. Shuzuke, K. and Jones, N. (1994). YAP1 dependent activation of TRX2 is essential for the response of Saccharomices cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13, 655–664.Google Scholar
  43. Stuart, G. W., Searle, P. F., Chen, H. Y, Brinster, R. L., and Palmiter, R. D. (1984). A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc. Natl. Acad. Sci. USA 81, 7318–7322.PubMedCrossRefGoogle Scholar
  44. Szczypka, M.S. and Thiele, D. J. (1989). A cysteine reach nuclear protein activates yeast metallothionein gene transcription. Mol. Cell. Biol. 9, 421–429.PubMedGoogle Scholar
  45. Thiele, D.J. (1988). ACEl regulates expression of the Saccharomices cere visiae metallothionein gene. Mol. Cell. Biol. 8, 2745–2752.PubMedGoogle Scholar
  46. Thiele, D. J. (1992). Metal regulated transcription in eukaryotes. Nucl. Acid. Res. 20, 1183–1191.CrossRefGoogle Scholar
  47. Tkachuk, D. C., Kohler, S., and Cleary, M. L..(1994). Involvement of a homolog of drosophila thrithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 71, 691–700.CrossRefGoogle Scholar
  48. Wemmie, J.A., Wu, A.L., Harshman, K.D., Parker, C.S. and Moye-Rowley, W.S. (1994). Transcriptional activation mediated by yeast AP-1 protein is required for normal cadmium tolerance. J. Biol. Chem. 269, 14690–14697.PubMedGoogle Scholar
  49. Westin, G., and Schaffner, W. (1988). A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein gene. EMBO J. 7, 3763–3770.PubMedGoogle Scholar
  50. Winge, D.R. (1998). Copper-regulatory domain involved in gene expression. In: Copper transport and its disorders: molecular and cellular aspects (A. Leone and J.F. Mercer Eds.); Advances in Experimental Medicine and Biology; Plenum Press Inc., this volume.Google Scholar
  51. Wu, A., Wemmie, J.A., Edginton, N.P., Goebl, M., Guevara, J.L., Moye-Rowley, W.S. (1993). Yeast bZIP proteins mediate pleiotropic drug and metal resistance. J. Biol. Chem. 268, 18850–18858PubMedGoogle Scholar
  52. Xu, C. (1993). cDNA cloning of a mouse factor that activates transcription frm a metal response element of the mouse metallothionein-I gene. DNA Cell Biology 12, 517–525.CrossRefGoogle Scholar
  53. Zafarullah, M., Bonham, K. and Gedamu, L. (1988). Structure of the raimbow trout metallothionein B gene and characterization of its metal-responsive region. Mol. Cell. Biol. 8, 4469–4476.PubMedGoogle Scholar
  54. Zhou, P. and Thiele, D. J. (1991). Isolation of metal activated transcription factor gene in Candida glabrata by complementation in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. USA 88, 6112–6116.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. Remondelli
    • 1
  • O. Moltedo
    • 1
  • M. C. Pascale
    • 2
  • Arturo Leone
    • 2
  1. 1.Dipartimento di Biochimica e Biotecnologie MedicheUniversitè degli Studi di Napoli “Federico II”Italy
  2. 2.Dipartimento di Scienze FarmaceuticheUniversité degli Studi di SalernoPenta di Fisciano (Salerno)Italy

Personalised recommendations