Skip to main content

Metal Regulation of Metallothionein Gene Transcription in Mammals

  • Chapter
Copper Transport and Its Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 448))

  • 206 Accesses

Abstract

Heavy metals play their essential role as nutrients and as cofactors for a variety of enzymes and metallo-proteins (O’Halloran, 1989). Metals are normally present in trace amount in the cell but these levels can increase consistently following environmental or nutritional changes. To avoid toxic effects and death due to metal overload, cells have de-veloped during evolution several biochemical and molecular mechanisms which regulate the metal uptake, its intracellular distribution and elimination from the intracellular compartments. Therefore, it appears that two main processes control intracellular metal ho-meostasis, the first based on the regulation of the enzymatic activities of metal pumps and transporters, the second activating gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abshire, M.K., Buzard, G.S., Shiraishi, N., and Waalkes, M.P. (1996). Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene. J. Toxicol. Environ. Health 48, 359–377

    Article  PubMed  CAS  Google Scholar 

  • Angel, P., M. Imagawa, R. Chiu, B. Stein, R. J. Imbra, H. J. Rahmsdorf, C. Jonat, P. Herrlich, and Karin, M. (1987). Phorbol ester inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Bremner, I., and J. H. Beattie. (1990). Metallothionein and the trace minerals. Ann. Rev. Nutr. 10, 63–83.

    Article  CAS  Google Scholar 

  • Cavigelli, M., Li, W.W., Lin, A., Su, B., Yoshioka, K., and Karin, M. (1996). The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phospatase. EMBO J. 15, 6269–6279.

    PubMed  CAS  Google Scholar 

  • Culotta, V. C., and Hamer, D. H.. (1989). Fine mapping of a mouse metallothionein gene metal response element. Mol. Cell. Biol. 9, 1376–1380.

    PubMed  CAS  Google Scholar 

  • Czupryn, M., Brown, W. E., and Vallée, B. L. (1992). Zinc rapidly induces a metal response element binding factor. Proc. Natl. Acad. Sci. USA 89, 10395–10399.

    Article  PubMed  CAS  Google Scholar 

  • DiDonato, M., and Sarkar, B. (1997). Copper transport and its alterations in Menkes and Wilson deseases. Biochim. Biophys. Acta 1360(1), 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.J. (1995). Transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467.

    Article  PubMed  CAS  Google Scholar 

  • Elledge, S. J., J. T. Mulligan, S. W. Ramer, M. Spottswood, and Davis, R. W. (1991). LambdaYES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. USA 88, 1731–1735.

    Article  PubMed  CAS  Google Scholar 

  • Fürst, P., S. Hu, R. Hackett, and Hamer, D. (1988). Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55, 705–717.

    Article  PubMed  Google Scholar 

  • Garner, M., and Revzin, A. (1981). A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the E. coli lactose regulatory system. Nucl. Acids Res. 9, 3047–3060.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, T. J., Postma, J. P. M., Brown, R. S. and Argos, P. (1988) A model for tertiary structure of the 28 residue DNA-binding motif (‘zinc finger’) common to many eukaryotic transcriptional regulatory proteins. Protein Engineering 2, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Imbert, J., Zafarullah, M., Culotta, V. C., Gedamu, L., and Hamer, D. (1989). Transcription factor MBF-I interacts with metal regulatory elements of higher eucaryotic metallothionein genes. Mol. Cell. Biol. 9, 5315–5323.

    PubMed  CAS  Google Scholar 

  • Inouye, C., Remondelli, P., Karin, M. and Elledge, S. (1994). Isolation of a metal response element binding protein using a novel expression cloning procedure: the one hybrid system. DNA Cell Biol. 13, 731–742.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P., and Ringertz, N.R. (1990). Cadmium induces transcription of proto-oncogenes c-jun and c-myc in rat L6 myoblasts. J. Biol. Chem. 265, 14061–14064.

    PubMed  CAS  Google Scholar 

  • Jones, K.A. and Tjian, R. (1985). Spl binds to promoter sequences and activates herpes simplex virus ‘immediate-early’ gene transcription in vitro. Nature (London) 317, 179–182.

    Article  CAS  Google Scholar 

  • Kägi, J. H. R. (1991). Overview of metallothionein. Methods Enzymol. 205, 613–626.

    Article  PubMed  Google Scholar 

  • Karin, M., and Herschman, H. R. (1980). Characterization of metallothioneins induced in HeLa cells by dexamethasone and zinc. Eur. J. Biochem. 107, 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., and Richards, R. I. (1982). Human metallothionein genes: primary structure of the metallothionein-II gene and a related processed gene. Nature 299, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., Najaran, R., Haslinger, A., Valenzuela, P., Welch, J. and Fogel, S. (1984a). Primary structure and transcription of an amplified genetic locus: the CUPl locus in yeast. Proc. Nat. Acad. Sci. USA 81, 337–341.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., Haslinger, A., Holtgreve, H., Cathala, G., Slater, E., and Baxter, J.D. (1984b). Activation of a heterologous promoter in response to dexamethasone and cadmium by metallothionein gene 5′-flanking DNA. Cell 36,371–379.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., Haslinger, A., Heguy, A., Dietlin, T., and Cooke, T. (1987). Metal-responsive elements act as positive modulators of human metallothionein-IIA enhancer activity. Mol. Cell. Biol. 7, 606–613.

    PubMed  CAS  Google Scholar 

  • Koizumi, S., Suzuki, K., and Otsuka, K. (1992). A nuclear factor that recognizes the metal-responsive element of the human metallothionein IIa gene. J. Biol. Chem. 267, 18659–18664.

    PubMed  CAS  Google Scholar 

  • Labbè, S., Prévost, J., Remondelli, P., Leone, A., and Sèguin, C. (1991). A nuclear factor binds to the metal regulatory elements of the mouse gene encoding metallothionein-I. Nucl. Ac. Res. 19, 4225–4231.

    Article  Google Scholar 

  • Lim, L., Manser, E., Leung, T., and Hall, C. (1996). Regulation of phosphorilation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorilation signalling pathways. Eur. J. Biochem. 242, 171–185.

    Article  PubMed  CAS  Google Scholar 

  • Minichiello, L., Remondelli, P., Cigliano, S., Bonatti, S. and Leone, A. (1994). Interactions of nuclear proteins from uninduced, induced and superinduced HeLa cells with the metal regulatory elements MRE 3 and 4 of the human metallothionein 11a encoding gene. Gene 143, 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, A.P., and Chelly, J. (1995). Menkes and Wilson deseases. Adv. Genet. 33, 233–253.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, R.I. (1993). Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, P. R., Salser, S. J., and Wold, B. (1988). Constitutive and metal-inducible protein: DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev. 2, 412–427.

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran, T.V. (1989) in Metal Ion in Biological Systems (Siegel, H. and Sigel, A., eds.) Mercel Dekker, Inc. New York, pp. 105–146.

    Google Scholar 

  • Palmiter, R. D. (1994). Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a costitutively active transcription factor, MTF1. Proc. Natl. Acad. Sci. USA 91, 1219–1223. EMBO J. 15, 1784-1791

    Article  PubMed  CAS  Google Scholar 

  • Palmiter, R.D., Cole, T.B., and Findley, S.D. (1996). ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15, 1784–1791.

    PubMed  CAS  Google Scholar 

  • Palmiter, R.D., Cole, T.B., Quaife, C.R, and Findley, S.D. (1996). ZnT-3 a putative tansporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93, 14934–14939.

    Article  PubMed  CAS  Google Scholar 

  • Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z., and Schaffner, W. (1993). Cloned transcription factor MTF-I activates the mouse metallothionein I promoter. EMBO J. 12, 1355–1362.

    PubMed  CAS  Google Scholar 

  • Remondelli, P., Pascale, M.C., and Leone, A. (1988). Effects of zinc, copper and cadmium on protein biosynthesis of two differentiated human hepatoma cell lines. In Metal Ion Homeostasis: Molecular Biology and Chemistry (D. Winge and D.H. Hamer Eds.) UCLA Symposia on Molecular and Cellular Biology; Alan R.Liss, Inc., New York, NY, U.S.A. 98, 56–69.

    Google Scholar 

  • Remondelli, P. and Leone, A. (1997). Interactions of the zinc regulated transcription factor (ZiRFl) with the the mouse MT Ia promoter. Biochem. J. 323, 79–80.

    PubMed  CAS  Google Scholar 

  • Remondelli, P., Moltedo, O. and A. Leone (1997). Regulation of ZiRF1 and basal SP1 transcription factors MRE-binding activity by transition metals. FEBS Letters 416, 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Searle, P. (1990). Zinc dependent binding of a liver nuclear factor to metal response element MREa of the mouse metallothionein-I gene and variant sequences. Nucl. Acids Res. 18, 4683–4690.

    Article  PubMed  CAS  Google Scholar 

  • Searle, P. F., Davidson, B.L., Stuart, G.W., Wilkie, T.M., Norstedt, G., and Palmiter, R.D. (1984). Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol. Cell. Biol. 4, 1221–1230.

    PubMed  CAS  Google Scholar 

  • Sèguin, C. (1991). A nuclear factor requires Zn2+ to bind a regulatory MRE element of the mouse gene encoding metallothionein-1. Gene 97, 295–300.

    Article  PubMed  Google Scholar 

  • Sèguin, C., and Prevost, J. (1988). Detection of a nuclear protein that interacts with a metal regulatory element of the mouse metallothionein I gene. Nucl. Acids Res. 16, 10547–10560.

    Article  PubMed  Google Scholar 

  • Shuzuke, K. and Jones, N. (1994). YAP1 dependent activation of TRX2 is essential for the response of Saccharomices cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13, 655–664.

    Google Scholar 

  • Stuart, G. W., Searle, P. F., Chen, H. Y, Brinster, R. L., and Palmiter, R. D. (1984). A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc. Natl. Acad. Sci. USA 81, 7318–7322.

    Article  PubMed  CAS  Google Scholar 

  • Szczypka, M.S. and Thiele, D. J. (1989). A cysteine reach nuclear protein activates yeast metallothionein gene transcription. Mol. Cell. Biol. 9, 421–429.

    PubMed  CAS  Google Scholar 

  • Thiele, D.J. (1988). ACEl regulates expression of the Saccharomices cere visiae metallothionein gene. Mol. Cell. Biol. 8, 2745–2752.

    PubMed  CAS  Google Scholar 

  • Thiele, D. J. (1992). Metal regulated transcription in eukaryotes. Nucl. Acid. Res. 20, 1183–1191.

    Article  CAS  Google Scholar 

  • Tkachuk, D. C., Kohler, S., and Cleary, M. L..(1994). Involvement of a homolog of drosophila thrithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 71, 691–700.

    Article  Google Scholar 

  • Wemmie, J.A., Wu, A.L., Harshman, K.D., Parker, C.S. and Moye-Rowley, W.S. (1994). Transcriptional activation mediated by yeast AP-1 protein is required for normal cadmium tolerance. J. Biol. Chem. 269, 14690–14697.

    PubMed  CAS  Google Scholar 

  • Westin, G., and Schaffner, W. (1988). A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein gene. EMBO J. 7, 3763–3770.

    PubMed  CAS  Google Scholar 

  • Winge, D.R. (1998). Copper-regulatory domain involved in gene expression. In: Copper transport and its disorders: molecular and cellular aspects (A. Leone and J.F. Mercer Eds.); Advances in Experimental Medicine and Biology; Plenum Press Inc., this volume.

    Google Scholar 

  • Wu, A., Wemmie, J.A., Edginton, N.P., Goebl, M., Guevara, J.L., Moye-Rowley, W.S. (1993). Yeast bZIP proteins mediate pleiotropic drug and metal resistance. J. Biol. Chem. 268, 18850–18858

    PubMed  CAS  Google Scholar 

  • Xu, C. (1993). cDNA cloning of a mouse factor that activates transcription frm a metal response element of the mouse metallothionein-I gene. DNA Cell Biology 12, 517–525.

    Article  CAS  Google Scholar 

  • Zafarullah, M., Bonham, K. and Gedamu, L. (1988). Structure of the raimbow trout metallothionein B gene and characterization of its metal-responsive region. Mol. Cell. Biol. 8, 4469–4476.

    PubMed  CAS  Google Scholar 

  • Zhou, P. and Thiele, D. J. (1991). Isolation of metal activated transcription factor gene in Candida glabrata by complementation in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. USA 88, 6112–6116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remondelli, P., Moltedo, O., Pascale, M.C., Leone, A. (1999). Metal Regulation of Metallothionein Gene Transcription in Mammals. In: Leone, A., Mercer, J.F.B. (eds) Copper Transport and Its Disorders. Advances in Experimental Medicine and Biology, vol 448. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4859-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4859-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7204-2

  • Online ISBN: 978-1-4615-4859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics