The Effect of Copper on Tight Junctional Permeability in a Human Intestinal Cell Line (Caco-2)

  • Simonetta Ferruzza
  • Yula Sambuy
  • Giuseppe Rotilio
  • Maria Rosa Ciriolo
  • Maria Laura Scarino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 448)


Copper is a trace element essential to life, participating to a wide number of biochemical reactions as cofactor of many enzymes (Linder, 1991). However, it also exhibits toxic effects and can impair cellular functions (Goyer, 1994). For this reason it is crucial to understand the relashionship between requirements and toxicity of this heavy metal.


Tight Junction Transepithelial Electrical Resistance Human Intestinal Cell Plasma Membrane Domain Tight Junction Integrity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adson, A., Raub, T., Burton, P., Barshun, C., Hilgers, A., Audus, K., and Ho, N. (1994). Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci 83, 1529–1536.PubMedCrossRefGoogle Scholar
  2. Anderson, J., Balda, M, and Fanning, A. (1993). The structure and regulation of tight junctions. Curr. Opin. Cell. Biol. 5, 772–778.PubMedCrossRefGoogle Scholar
  3. Baker, R., Baker, S., and La Rosa, K. (1995). Polarized Caco-2 cells. Effect of reactive oxygen metabolites on enterocyte barrier function. Dig. Dis. Sci. 40, 510–518.PubMedCrossRefGoogle Scholar
  4. Ballard, S., Hunter, J., and Taylor, A. (1995). Regulation of tight junction permeability during nutrient absorption across intestinal epithelium. Annu. Rev. Nutr. 15, 35–55.PubMedCrossRefGoogle Scholar
  5. Bohme, M., Diener, M., Mestres, R, and Rummel, W. (1992). Direct and indirect actions of HgCl2 and methyl mercury chloride on permeability and chloride secretion across the rat colonie mucosa. Toxicol. Appl. Pharmacol. 114,285–294.PubMedCrossRefGoogle Scholar
  6. Cereijido, M., Gonzalez-Mariscal, R., Contreras, R., Gallardo, J., Garcia-Villegas, R., and Valdes, J. (1993). The making of a tight junction. J. Cell Sci. Suppl. 17, 127–132.PubMedGoogle Scholar
  7. Chen, Y., Merzdorf, C., Paul, D., and Goodenough, D. (1997). COOH-terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J Cell Biol 891–899.Google Scholar
  8. Dawson, D., and Ballatori, N. (1995). Membrane transporters as sites of action and routes of entry for toxic metals. In Toxicology of metals. Biochemical aspects., R. Goyerand M. Cherian, eds. (Berlin: Springer-Verlag), pp. 53–76.Google Scholar
  9. Ferruzza, S., Ranaldi, G., Di Girolamo, M., and Sambuy, Y. (1995). The transport of lysine across monolayers of human cultured intestinal cells (Caco-2) depends on Na+-dependent and Na+-independent mechanisms on different plasma membrane domains. J. Nutr. 125, 2577–2585.PubMedGoogle Scholar
  10. Fogh, J., Fogh, J.M., and Orfeo, T. (1977). One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 221–226.PubMedGoogle Scholar
  11. Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123, 1777–1788.PubMedCrossRefGoogle Scholar
  12. Ganapathy, V., and Leibach, F.H. (1991). Proton-coupled solute transport in the animal cell plasma membrane. Curr. Opin. Cell Biol 3, 695–701.PubMedCrossRefGoogle Scholar
  13. Goering, P., Waalkes, M., and Klaassen, C. (1995). Toxicology of cadmium. In Toxicology of metals. Biochemical aspects., R. Goyer and M. Cherian, eds. (Berlin: Springer-Verlag), pp. 189–214.Google Scholar
  14. Goyer, R. (1994). Biology and nutrition of essential elements. In Risk assessment of essential elements., C. Abernathy, A. Mertz and S. Olin, eds. (Washington DC: International Life Sciences Institute Press).Google Scholar
  15. Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A., and Desjeux, J.F. (1984). Epithelial properties of human colonic carcinoma cell line Caco 2: electrical parameters. Am. J. Physiol. 247, C26–C267.Google Scholar
  16. Gunshin, H., Mackenzie, B., Berger, U., Gunshin, Y, Romero, M., Boron, W., Nussberger, S., Gollan, J., and Hediger, M. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 338, 482–488.CrossRefGoogle Scholar
  17. Hashimoto, K., Matsunaga, N., and Shimizu, M. (1994). Effect of vegetable extracts on the transepithelial permeability of the human intestinal Caco-2 cell monolayer. Biosci. Biotech. Biochem. 58, 1345–1346.CrossRefGoogle Scholar
  18. Hecht, G., Pothoulakis, C., La Mont, J.T., and Madara, J.L. (1988). Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524.PubMedCrossRefGoogle Scholar
  19. Hecht, G., Robinson, B., and Koutsouris, A. (1994). Reversible disassembly of an intestinal epithelial monolayer by prolonged exposure to phorbol esters. Am. J. Physiol. 266, G214–G221.PubMedGoogle Scholar
  20. Keon, B.H., Schafer, C., Kuhn, C., Grund, C. and Franke, W. (1996). Symplekin, a novel type of tight junction plaque protein. J Cell Biol 134, 1003–1018.PubMedCrossRefGoogle Scholar
  21. Linder, M. (1991). The biochemistry of copper. Plenum Press, New York.Google Scholar
  22. Manna, C., Galletti, P., Cucciolla, V, Moltedo, O., Leone, A., and Zappia, V. (1997). The protective effect of olive oil polyphenol (3,4-dihydroxyphenyl)-ethanol counteracts reactive oxygen metabolite-induced cytotoxicity in Caco-2 cells.Google Scholar
  23. Narai, A., Arai, S., and Shimizu, M. (1997). Rapid decrease in transepithelial electrical resistance of human intestinal Caco-2 cell monolayers by cytotoxic membrane perturbants. Toxicol. in Vitro 11, 347–354.PubMedCrossRefGoogle Scholar
  24. Neutra, M., and Louvard, D. (1989). Differentiation of intestinal cells in vitro. Mod. Cell Biol. 8, 363–398.Google Scholar
  25. Ranaldi, G., Islam, K., and Sambuy, Y (1994). D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco 2. Antimicrob. Agents Chemother. 38, 1239–1245.CrossRefGoogle Scholar
  26. Rossi, A., Poverini, R., Di Lullo, G., Modesti, A., Modica, A., and Scarino, M.L. (1996). Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line Caco-2. Toxicol. In Vitro 10, 27–36.PubMedCrossRefGoogle Scholar
  27. Schneeberger, E., and Lynch, R. (1992). Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262, L647–L661.PubMedGoogle Scholar
  28. Stohs, S., and Bagchi, D. (1995). Oxidative mechanisms in th etoxicity of metal ions. Free Radical Biol. Med. 18, 321–336.CrossRefGoogle Scholar
  29. Thwaites, D., Hirst, B., and Simmons, N. (1994). Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H+-coupled absorption. Br. J. Pharmacol. 113, 1050–1056.PubMedCrossRefGoogle Scholar
  30. Thwaites, D., McEwan, G., and Simmons, N. (1995). The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers. J. Membr. Biol. 145, 245–256.PubMedGoogle Scholar
  31. Wilson, G. (1989). Cell culture techniques for the study of drug transport. Eur. J. Drug Metab. Pharmacokinet. 15, 159–163.CrossRefGoogle Scholar
  32. Zweibaum, A., Laburthe, M., Grasset, E., and Louvard, D (1991). Use of cultured cell lines in studies of intestinal cell differentiation and function. In Handbook of Physiology: The Gastrointestinal System, M. Field and R.A. Frizzel, eds. (Bethesda, MD: Am. Physiol. Soc), pp. 223–255.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Simonetta Ferruzza
    • 1
  • Yula Sambuy
    • 1
  • Giuseppe Rotilio
    • 1
    • 2
  • Maria Rosa Ciriolo
    • 3
  • Maria Laura Scarino
    • 1
  1. 1.Istituto Nazionale della NutrizioneRomaItaly
  2. 2.Dipartimento di BiologiaUniversità di Roma “Tor Vergata”RomaItaly
  3. 3.Dipartimento di Scienze BiomedicheUniversità di ChietiChietiItaly

Personalised recommendations