Skip to main content

Chondrocytes-ECM Interactions in Human Osteoarthritis

  • Chapter
Rheumaderm

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 455))

Abstract

Interactions between cells and extracellular matrix (ECM) are critical to the biological processes that take place in tissue such as cartilage. These processes include cell adhesion, growth, differentiation, migration, and matrix synthesis and degradation. The cell receptors playing a central role in cellular attachment to ECM are members of integrin family of heterodimeric transmembrane glycoproteins and some other cell membrane proteins: recently we have demonstrated that the cell membrane-bound peptidases CD 10 and CD26 are expressed on human articular chondrocytes and that their expression decreases with the worsening of osteoarthritis. Unpublished observations about the intracellular levels of substance P, met-Enkephalin, GRP and IL 10, carried out in our lab, seem to confirm the hypothesis that the “inside-out signaling” mediated by adhesion molecules, cooperates with a network of growth factors and cytokines, locally produced and carried through the ECM.

Our studies provide evidence that chondrocytes are supplied with an ample system of receptors widely interacting with an environmental signaling system and with the ECM that may act as “solid state modulator” of their metabolic activity. Final result of these interactions is the homeostatic balance or, alternatively, in case of disturbing circumstances, the metabolic alteration heading to the typical changes of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fassbender HG. Role of chondrocytes in the development of osteoarthritis. Am.J.Med. 83:17–24. (1987)

    Article  PubMed  CAS  Google Scholar 

  2. Shinmei M, Masuda K, Kikuchi T, Shimomura Y, Okada Y. Production of cytokines by chondrocytes and its role in proteoglycan degradation. J.Rheumatol.Suppl. 27:89–91. (1991)

    PubMed  CAS  Google Scholar 

  3. Shinmei M, Masuda K, Kikuchi T, Shimomura Y. The role of cytokines in chondrocyte mediated cartilage degradation. J.Rheumatol.Suppl. 16:32–34. (1989)

    Google Scholar 

  4. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton [see comments]. Science 260:1124–1127.(1993)

    Article  PubMed  CAS  Google Scholar 

  5. O’Toole TE, Katagiri Y, Faull RJ, et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J.Cell Biol. 124:1047–1059. (1994)

    Article  PubMed  Google Scholar 

  6. Chiquet M, Matthisson M, Koch M, Tannheimer M, Chiquet ER. Regulation of extracellular matrix synthesis by mechanical stress. Biochem.Cell Biol. 74:737–744. (1996)

    Article  PubMed  CAS  Google Scholar 

  7. Enomoto Iwamoto M, Iwamoto M, Nakashima K, et al. Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J.Bone Miner.Res. 12:1124–1132. (1997)

    Article  PubMed  Google Scholar 

  8. Lapadula G. L’interazione condrociti-matrice extracellulare nella patogenesi dell’osteoartrosi. Reumatismo 47:232–241.(1995)

    Google Scholar 

  9. Ingber DE. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Semin.Cancer Biol. 3:57–63. (1992)

    PubMed  CAS  Google Scholar 

  10. Davis GE. Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem.Biophys.Res.Commun. 182:1025–1031. (1992)

    Article  PubMed  CAS  Google Scholar 

  11. Lapadula G, Iannone F, Zuccaro C, et al. Integrin expression on chondrocytes; correlations with the degree of cartilage damage in human osteoarthritis. Clin.Exp.Rheumatol. 15:247–254. (1997)

    PubMed  CAS  Google Scholar 

  12. Kosher RA, Church RL. Stimulation of in vitro somite chondrogenesis by procollagen and collagen. Nature 258:327–330. (1975)

    Article  PubMed  CAS  Google Scholar 

  13. Dessau W, von der Mark H, von der Mark K, Fischer S. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J.Embryol.Exp.Morphol. 57:51–60. (1980)

    PubMed  CAS  Google Scholar 

  14. Kimata K, Oike Y, Tani K, et al. A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J.Biol.Chem. 261:13517–13525. (1986)

    PubMed  CAS  Google Scholar 

  15. Enomoto M, Leboy PS, Menko AS, Boettiger D. Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp.Cell Res. 205:276–285. (1993)

    Article  PubMed  CAS  Google Scholar 

  16. Aydelotte MB, Kuettner KE. Heterogeneity of articular chondrocytes and cartilage matrix. In: Woessner JF, Howell DS. eds. Cartilage degradation: basic and clinical aspects. New York: Marcel Dekker, Inc., 37–65. (1993)

    Google Scholar 

  17. Salter DM, Godolphin JL, Gourlay MS. Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J.Histochem.Cytochem. 43:447–457. (1995)

    Article  PubMed  CAS  Google Scholar 

  18. Meachim G, Brooke G. The pathology of osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ. eds. Osteoarthritis: Diagnosis and management. Philadelphia, London, Toronto, Mexico City, Rio de Janeiro, Sidney, Tokyo: W.B. Saunders Company, 29–42. (1984)

    Google Scholar 

  19. Lapadula G, Nico B, Cantatore FP, La Canna R, Roneali L, Pipitone V. Early ultrastructural changes of articular cartilage and synovial membrane in experimental vitamin A-induced osteoarthritis. J.Rheumatol. 22:1913–1921.(1995)

    PubMed  CAS  Google Scholar 

  20. Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hip. III.Distribution and metabolism of amino sugar-containing macromolecules. J.Bone Joint Surg.Am. 63:131–139. (1981)

    PubMed  CAS  Google Scholar 

  21. Ghosh P, Numata Y, Smith S, Read R, Armstrong S, Johnson K. The metabolic response of articular cartilage to abnormal mechanical loading induced by medial or lateral meniscectomy. In: van den Berg WB, van der Kraan PM, van Lent PLEM. eds. Joint destruction in arthritis and osteoarthritis. Basel, Boston, Berlin: Birkhauser Verlag, 89–93. (1993)

    Chapter  Google Scholar 

  22. Durr J, Goodman S, Potocnik A, von der Mark H, von der Mark K. Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp.Cell Res. 207:235–244.(1993)

    Article  PubMed  CAS  Google Scholar 

  23. Loeser RF. Integrin mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 36:1103–1110. (1993)

    Article  PubMed  CAS  Google Scholar 

  24. Loeser RF, Carlson CS, McGee MR Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp.Cell Res. 217:248–257. (1995)

    Article  PubMed  CAS  Google Scholar 

  25. Dalton SL, Marcantonio EE, Assoian RK. Cell attachment controls fibronectin and alpha 5 beta 1 integrin levels in fibroblasts. Implications for anchorage-dependent and — independent growth. J.Biol.Chem. 267:8186–8191.(1992)

    PubMed  CAS  Google Scholar 

  26. Clover J, Dodds RA, Gowen M. Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J.Cell Sci. 103:267–271. (1992)

    PubMed  CAS  Google Scholar 

  27. Saito T, Albelda SM, Brighton CT. Identification of integrin receptors on cultured human bone cells. J.Orthop.Res. 12:384–394. (1994)

    Article  PubMed  CAS  Google Scholar 

  28. Damsky C, Tremble P, Werb Z. Signal transduction via the fibronectin receptor: do integrins regulate matrix remodeling? Matrix Suppl 1:184–191. (1992)

    PubMed  CAS  Google Scholar 

  29. Yonezawa I, Kato K, Yagita H, Yamauchi Y, Okumura K. VLA-5-mediated interaction with fibronectin induces cytokine production by human chondrocytes. Biochem.Biophys.Res.Commun. 219:261–265. (1996)

    Article  PubMed  CAS  Google Scholar 

  30. Lapadula G, Iannone F, Zuccaro C, et al. Expression of membrane-bound peptidases (CD10 and CD26) on human articular chondrocytes. Possible role of neuropeptidases in the pathogenesis of osteoarthritis. Clin.Exp.Rheumatol. 13:143–148. (1995)

    PubMed  CAS  Google Scholar 

  31. Matucci Cerinic M. Sensory neuropeptides and rheumatic diseases. Rheum.Dis.Clin.North Am 19:975–991.(1993)

    Google Scholar 

  32. Kenny AJ, O’Hare MJ, Gusterson BA. Cell-surface peptidases as modulators of growth and differentiation. Lancet 1989. 2:785–787.

    Article  PubMed  CAS  Google Scholar 

  33. Villiger PM, Lotz M. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO.J. 1992. 11:135–143.

    PubMed  CAS  Google Scholar 

  34. Halliday DA, McNeil JD, Scicchitano R. A metabolite of substance P, SP7-11 is involved in the pathogenesis of inflammatory joint disease. Med.Hypotheses. 1993. 40:227–231.

    Article  PubMed  CAS  Google Scholar 

  35. Lapadula G, Iannone F, Acquista CA, et al. Increased expression of neuropeptides by osteoarthritic human articular chondrocytes. Arthritis Rheum. 1996; 39 Suppl:S269(Abstract)

    Google Scholar 

  36. Iannone F, Lapadula G, De Bari C, et al. Increased intracelular levels of interleukin 10 (IL-10) in osteoarthritic human articular chondrocytes. Arthritis Rheum. 1996; 39 Suppl:S269(Abstract)

    Google Scholar 

  37. O’Toole EA, Marinkovich MP, Hoeffler WK, Furthmayr H, Woodley DT. Laminin-5 inhibits human keratinocyte migration. Exp.Cell Res. 233:330–339. (1997)

    Article  PubMed  Google Scholar 

  38. Sjaastad MD, Angres B, Lewis RS, Nelson WJ. Feedback regulation of cell-substratum adhesion by integrin-mediated intracellular Ca2+ signaling. Proc.Natl.Acad.Sci.U.S.A. 91:8214–8218. (1994)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lapadula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapadula, G., Iannone, F. (1999). Chondrocytes-ECM Interactions in Human Osteoarthritis. In: Mallia, C., Uitto, J. (eds) Rheumaderm. Advances in Experimental Medicine and Biology, vol 455. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4857-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4857-7_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7203-5

  • Online ISBN: 978-1-4615-4857-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics