Advertisement

Rheumaderm pp 127-134 | Cite as

Sjögren’s Syndrome

Autoimmune Epithelitis
  • N. I. Tapinos
  • M. Polihronis
  • Athanasios G. Tzioufas
  • H. M. Moutsopoulos
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 455)

Abstract

Sjögren’s syndrome is a chronic autoimmune disorder characterized by mononuclear cell infiltration proximally to epithelial cells of exocrine glands. In recent years, several studies have tried to address the function of the components of the immunopathologic lesion in Sjögren’s syndrome.

The majority of the mononuclear infiltrating cells are CD4 positive T lymphocytes (60–70%) whereas B cells constitute one fourth of the infiltrating cells. Macrophages and natural killer cells are poorly represented in the lesion. Epithelial cells of minor salivary glands of patients with Sjögren’s syndrome express proinflammatory cytokines (IL-lß, IL- 6), protooncogenes (c-myc) and costimulatory molecules (B71, B72). The destruction of epithelial cells of Sjögren’s syndrome patients is probably due to activation of several apoptotic pathways since epithelial cells express different apoptosis related molecules such as Fas, FasL, Bax, while mononuclear cells express Bcl-2, Perform and Granzymes. Finally epithelial cells seem to exert a regenerative effort since they express trefoil proteins (pS2).

The above properties give epithelial cells a significant role in the pathophysiology of the syndrome but the exact events which drive the immune system towards an autoimmune reaction remain obscure.

Keywords

Salivary Gland Costimulatory Molecule Minor Salivary Gland Exocrine Gland Keratoconjunctivitis Sicca 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moutsopoulos HM. Immunopathology of Sjögren’s syndrome: more questions than answers. Lupus. 2: 209–11. 1993.PubMedCrossRefGoogle Scholar
  2. 2.
    Siamopoulos KC, Mavridis AK-Elisaf M, Droses AA, Moutsopoulos HM. Kidney involvement in primary Sjögren’s syndrome. Scand J Rheum (Suppl). 61: 156–60. 1986.Google Scholar
  3. 3.
    Papiris SA, Skopouli FN, Maniati MA, Constantopoulos SH, Moutsopoulos HM. Bronchiolitis in primary Sjögren’s syndrome. In: Proceedings of the 4th International Symposium on Sjögren’s syndrome. Kluger Publication, NY, USA. 431. 1993.Google Scholar
  4. 4.
    Skopouli FN, Barbatis C, Moutsopoulos HM. Liver involvement in primary Sjögren’s syndrome. Br J Rheum. 33: 745–8. 1994.CrossRefGoogle Scholar
  5. 5.
    Skopouli FN, Fox PC, Galanopoulou V, Atkinson JC, Jaffe ES, Moutsopoulos HM. T cell subpopulations in the labial minor salivary gland histopathologic lesion of Sjögren’s syndrome. J Rheumatol. 18: 210–14. 1991.PubMedGoogle Scholar
  6. 6.
    Sanders EM, Makgoba WM, Sharrow OS, et al. Human memory T-lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2 and LFA-1) and three other molecules (UCHL-1, CDw29 and pGp-1) and have enhanced IFN-? production. J Immunol. 140: 1401–7. 1988.PubMedGoogle Scholar
  7. 7.
    Dustin ML, Springer TA. Lymphocyte function associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol. 107: 321–31. 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Tzioufas AG, Talal N, Moutsopoulos HM. Sjögren’s syndrome. From polyclonal B cell activation to monoclonal B cell proliferation. In: “Immunology of the connective tissue diseases” Panayi GS, ed. Kluwer Acad. Publ., The Netherlands. 335–55. 1994.CrossRefGoogle Scholar
  9. 9.
    Lane HC, Callihan TR, Jaffe ES, Fauci AS, Moutsopoulos HM. Presence of intracytoplasmic IgG in the lymphocytic infiltrates of the minor salivary glands of patients with primary Sjögren’s syndrome. Clin Exp Rheumatol. 1: 237–9. 1983.PubMedGoogle Scholar
  10. 10.
    Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J Rheumatol. 34: 326–33. 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Fox RI, Kang HI, Ando D, Abrams J, Pisa E. Cytokine mRNA expression in salivary biopsies of Sjögren’s syndrome. J Immunol. 152: 5532–9. 1994.PubMedGoogle Scholar
  12. 12.
    Konttinen YT, Platts LAM, Tuominen S et al. Role of nitric oxide in Sjögren’s syndrome. Arthritis Rheum. 40: 875–83. 1997.PubMedCrossRefGoogle Scholar
  13. 13.
    Moutsopoulos HM. Sjögren’s syndrome: autoimmune epithelitis. Clin Immunol Immunopathol. 72: 162–5. 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Janeway CA, Bottomly K. Signals and signs for lymphocytes responses. Cell. 76: 275–85. 1994.PubMedCrossRefGoogle Scholar
  15. 15.
    Manoussakis MN, Dimitriou I, Kapsogeorgou E, Polihronis M, Xanthou G, Moutsopoulos HM. Expression of B7 costimulatory molecules by salivary gland epithelial cells in patients with primary Sjögren’s syndrome. Arthritis Rheum. 41: S225. 1997.Google Scholar
  16. 16.
    Chan EKL, Tan EM. Epitopic targets for autoantibodies in systemic lupus erythematosus and Sjögren’s syndrome. Curr Opinion Rheumatol. 1: 376–81. 1989.CrossRefGoogle Scholar
  17. 17.
    Manoussakis MN, Tzioufas AG, Pange PJE, Moutsopoulos HM. Serological profiles in subgroups of patients with Sjögren’s syndrome. Scand J Rheumatol. 61: 89–92. 1986.Google Scholar
  18. 18.
    Stclair EW, Talal N, Moutsopoulos HM et al. Epitope specificity of anti-La antibodies from patients with Sjögren’s syndrome. J Autoimmunity. 2: 335–44. 1989.CrossRefGoogle Scholar
  19. 19.
    Reichlin M, Rader M, Harley JB. Autoimmune response to the Ro/SSA particle is directed to the human antigen. Clin Exp Immunol. 76: 373–77. 1989.PubMedGoogle Scholar
  20. 20.
    Topfer F, Gordon T, McCluskey J. Intra and intermolecular spreading of autoimmunity involving the nuclear self antigens La (SSB) and Ro (SSA). Proc Natl Acad Sci USA. 92: 875–9. 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Prujin JM. The La (SS-B) antigen. In: Van Venrooij WJ, Maini RN, eds. Manual of biological markers of disease. Kluwer Academic Publishers. Dordrecht, B4. 2: l-14. 1994Google Scholar
  22. 22.
    Tzioufas AG, Yiannaki E, Sakarellos-Daitsiotis M, Routsias JG, Sakarellos C, Moutsopoulos HM. Fine specificity of autoantibodies to La/SSB: epitope mapping, and characterization. Clin Exp Immunol. 108: 191–8. 1997.PubMedCrossRefGoogle Scholar
  23. 23.
    Haneji N, Nakamura T, Takio K et al. Identification of a-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science. 276: 604–7. 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Perrin D, Aunis D. Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature. 315: 589. 1985.PubMedCrossRefGoogle Scholar
  25. 25.
    Baboonian C, Venables PJW, Booth J, Williams DG, Roffe LM, Maini RN. Virus infection induces redistribution and membrane localization of the nuclear antigen La(SSB): a possible mechanism for autoimmunity. Clin Exp Immunol. 78: 454–59. 1989.PubMedGoogle Scholar
  26. 26.
    Bachmann M, Chang S, Slor H, Kukulies J, Muller WEG. Shuttling of the autoantigen La between nucleus and cell surface after UV irradiation of human keratinocytes. Exp Cell Res. 191: 171–80. 1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Yannopoulos DI, Roncin S, Lamour A, Pennec YL, Moutsopoulos HM, Youniou P. Conjuctival epithelial cells from patients with Sjögren’s syndrome inappropriately express major histocompatibility complex molecules, La(SSB) antigen, and heat shock proteins. J Clin Immunol. 12: 259–65. 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Casciola-Rosen L, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 179: 1317–30. 1994.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosen A, Casciola-Rosen L, Ahearn J. Novel packages of viral and self antigens are generated during apoptosis. J Exp Med. 181: 1557–61. 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Martin SJ, O’Brien GA, Nishioka WK et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem. 270: 6425–28. 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Itoh N, Yonehara S, Ishii A et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66: 233–43. 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagata S, Golstein P. The Fas death factor. Science. 267: 1449–55. 1995.PubMedCrossRefGoogle Scholar
  33. 33.
    Lowin B, Hahme M, Mattmann C, Tschopp J. Cytolytic T cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 370: 650–2. 1994PubMedCrossRefGoogle Scholar
  34. 34.
    Braun MY, Lowin B, French L, Acha-Orbea H, Tschopp J. Cytotoxic T cells deficient in both functional fas ligand and perforin show residual activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med. 183: 657–61. 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Rusell JH, Rush B, Weaver C, Wang R. Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide. Proc Natl Acad Sci USA. 90: 4409–13. 1993.CrossRefGoogle Scholar
  36. 36.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 75: 1169–77. 1993.PubMedCrossRefGoogle Scholar
  37. 37.
    Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role of CD95 ligand in preventing graft rejection. Nature. 377: 630–32. 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Kong L, Ogawa N, Nakabayashi T et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 40: 87–97. 1997.PubMedCrossRefGoogle Scholar
  39. 39.
    Polihronis M, Tapinos NI, Theoharis SE et al. Modes of epithelial cell death and repair in Sjögren’s syndrome. Arthritis Rheum. 41: S224. 1997.Google Scholar
  40. 40.
    Berke G. The CTL’s kiss of death. Cell. 81: 9–12. 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu CC, Walsh CM, Young D. Perforin: structure and function. Immunol Today. 16: 194–201. 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Meikrantz W, Gisselbrecht S, Tarn SW, Schlegel R. Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA. 91: 3754–58. 1994.PubMedCrossRefGoogle Scholar
  43. 43.
    Darmon AJ, Nicholson DW, Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature. 377: 446–8. 1995.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen G, Shi L, Litshfield DW, Greenberg AH. Rescue from Granzyme B-induced apoptosis by Weel kinase. J Exp Med. 181: 2295–2300. 1995.PubMedCrossRefGoogle Scholar
  45. 45.
    Smyth M, Trapani JA. Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today. 16: 202–6. 1995.PubMedCrossRefGoogle Scholar
  46. 46.
    Williams NS, Engelhard VH. Identification of a population of CD4 CTL that utilizes a perforin-rather than a FasL-dependent cytotoxic mechanism. J Immunol. 156: 153–9. 1996.PubMedGoogle Scholar
  47. 47.
    Tapinos NI, Xanthou G, Polihronis M, Moutsopoulos HM. CD4 cytotoxic T cells expressing perforin and CD11c positive cells in the immunopathologic lesion of Sjögren’s syndrome. Clin Exp Rheum. 16: 198. 1998.Google Scholar
  48. 48.
    Lefebvre O, Chenard MP, Masson R et al. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 274: 259–62. 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • N. I. Tapinos
    • 1
  • M. Polihronis
    • 1
  • Athanasios G. Tzioufas
    • 1
  • H. M. Moutsopoulos
    • 1
  1. 1.Department of PathophysiologySchool of Medicine, University of AthensAthensGreece

Personalised recommendations