Advertisement

Rheumaderm pp 93-100 | Cite as

Raynaud’s Phenomenon and Vascular Disease in Systemic Sclerosis

  • S. Generini
  • M. Matucci Cerinic
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 455)

Abstract

Raynaud’s phenomenon (RP) is very often the first manifestation of SSc preceding the onset of all the other signs and symptoms of the disease. Two structures are involved in the pathogenesis of RP: the endothelium and the peripheral nervous system (PNS). The hypothesis is that SSc modifies consistently the activity of both these systems leading eventually to RP. The disease, through the injury to the endothelium, jeopardizes the basilar endothelial-dependent vascular tone control. An increase of endothelin, a potent endo- thelial-derived vasoconstrictor, and the reduction of nitric oxide, one of the main endothelial vasodilators, are two key events involved in the genesis of RP. The PNS is also targeted by the disease as demonstrated by the high incidence of neuropathy in SSc patients. A marked reduction of sensory fibres has been detected in SSc skin. Thus, the involvement of nerve terminals reduces the vasodilatory, endothelial dependent or independent, potential of the neuropeptides released by sensory nerve endings. Indeed, an increased sensitivity of α2 adrenoceptors mediated vasoconstriction has been shown in SSc skin. The complex vasodilatory network formed by the interaction between the endothelium and the PNS seems greatly damaged by SSc leading inesorably toward vascular tone dysfunction clinically evident as RP.

Keywords

Systemic Sclerosis Vasoactive Intestinal Peptide Calcitonin Gene Related Peptide Sensory Nerve Ending Angiotensin Converting Enzyme Plasma Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seibold JR.: Scleroderma. In Textbook of Rheumatology, (eds. W N Kelly, ED Harris, S Rudy, and CB Sledge, 1989, pp. 1215–44. WB Saunders, Philadelphia.Google Scholar
  2. 2.
    Campbell PM and Leroy EC: Pathogenesis of systemic sclerosis: a vascular hypothesis. Semin Arthritis Rheum 4: 351–68. 1975PubMedCrossRefGoogle Scholar
  3. 3.
    LeRoy EC: Systemic sclerosis: A vascular perspective. Rheum Dis Clin N Am 22: 675–694. 1996CrossRefGoogle Scholar
  4. 4.
    Fleischmajer R, Perlish JS: Capillary alterations in scleroderma. J AM Acad Dermatol 2: 161–70. 1980PubMedCrossRefGoogle Scholar
  5. 5.
    Generini S, Kahaleh BM, Matucci Cerinic M, et al.: Raynaud’s phenomenon and systemic sclerosis. Ann Ital Med Int 11: 125–131. 1996PubMedGoogle Scholar
  6. 6.
    Pearson JD: The endothelium: its role in systemic sclerosis. Ann Rheum Dis 50, 866–71. 1991PubMedCrossRefGoogle Scholar
  7. 7.
    Milner P, Ralevic V, Hopwood AM, Fehér E, Lincoln J, Kirpatrick KA, Burnstock G: Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acethycholine during hypoxia. Experientia 45: 121–125. 1989PubMedCrossRefGoogle Scholar
  8. 8.
    Milner P, Kirpatrick K, Ralevic V, Toothill V, Pearson J, Burnstock G: Endothelial cells cultured from human umbilical vein release ATP substance P and acetylcholine in response to increased flow. Proc R Soc London B, 241: 245–248. 1990.CrossRefGoogle Scholar
  9. 9.
    Prins BA, Hu RM, Nazario B, et al.: Prostaglandin E2 and prostacyclin inhibit the production and secretion of endothelin from cultured endothelial cells. J Biol Chem 269: 11938–44. 1994PubMedGoogle Scholar
  10. 10.
    Boulanger C and Luscher TF: Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest 85: 587–590. 1990Google Scholar
  11. 11.
    Warner TD, Mitchell JA, De Nucci G and Vane JR: Endothelin-1 and endothelin-3 release EDRF from isolated perfused arterial vessels of the rat and rabbit. J Cardiovasc Pharmacol 13: S85-S88. 1989Google Scholar
  12. 12.
    Miura K, Yukimura T, Yamashita Y, Shimmen T, et al.: Endothelin stimulates the renal production of prostaglandin E2 and I2 in anesthetized dogs. Eur J Pharmacol 170: 91–93. 1989PubMedCrossRefGoogle Scholar
  13. 13.
    Miura K, Yukumura T, Yamashita Y, et al.: Renal and femoral vascular responses to endothelin-1 in dogs: role of prostaglandins. J Pharmacol Exp Ther 256: 11–17. 1991PubMedGoogle Scholar
  14. 14.
    Matucci-Cerinic M, Kahaleh MB, LeRoy EC. The vascular involvement in systemic sclerosis. In: “Systemic Sclerosis”, eds. PJ Clements and DE Furst, Baltomore 153–174. 1996Google Scholar
  15. 15.
    Kahaleh BM, Matucci-Cerinic M: Endothelial injury and its implication. In: “Thrombosis: an update”, eds. GG Neri Serneri, GF Gensini, R Abbate, D Prisco, Scientific Press, Florence, 649–658. 1992Google Scholar
  16. 16.
    Kahaleh BM: Lymphocyte interactions with the vascular endothelium in scleroderma. Clin Dermatol 12: 1994Google Scholar
  17. 17.
    Cohen S, Johnson AR, Hurd E: Cytotoxicity of sera from patients with scleroderma: effects on human endothelial cells and fibroblast in culture. Arthritis Rheum 26: 170–78. 1983PubMedCrossRefGoogle Scholar
  18. 18.
    Kahaleh MB, Sherer GK, and LeRoy EC: Endothelial injury in scleroderma. J Exp Med 149: 1326–35. 1979PubMedCrossRefGoogle Scholar
  19. 19.
    Kobayashi Y, Masuzawa M, Nishioka K and Sano S: Growth suppression of endothelial cells of the guinea pig aorta by the sera of patients with progressive systemic sclerosis. Nippon hifuka Gakkai Zasshi 94: 1639–1641. 1984PubMedGoogle Scholar
  20. 20.
    Penning CA, Cunnigham J, French MAH, et al.: Antibody-dependent cellular cytotoxicity of human vascular endothelium in systemic sclerosis. Clin Exp Immunol 58: 548–556. 1984Google Scholar
  21. 21.
    Shanahan WR Jr, Korn: Cytotoxic acivity of sera from scleroderma and other connective tissue diseases: lack of cellular and disease specificity. Arthritis Rheum 25 1391–1395. 1982PubMedCrossRefGoogle Scholar
  22. 22.
    Summers GD, Weiss JB, Jayson MIV: Failure of sera from paients with scleroderma to exhibit cytotoxicity towards human umbilical vein endothelial cells. Rheumatol Int 5: 9–13. 1984PubMedCrossRefGoogle Scholar
  23. 23.
    Marks RM, Czerniecki M, Andrews BS and Penny R: The effects of scleroderma serum on human microvascular endothelial cells. Arthritis Rheum 31: 1524–34. 1988PubMedCrossRefGoogle Scholar
  24. 24.
    Kanaleh BM and Yin T: The molecular mechanism of endothelial cell injury in scleroderma. Identification of granzyme 1 (a product of cytolytic T cell) in SSc sera. Arthritis Rheum 33: s21. 1992Google Scholar
  25. 25.
    Kahaleh BM and Fan PS: Ctotoxic T cel involvement in scleroderma: detection of granzyme a gene expression in systemic sclerosis skin. Arthritis Rheum 35: s22. 1992Google Scholar
  26. 26.
    Kahaleh BM and LeRoy EC: Endothelial injury in scleroderma: a protease mechanism. J Lab Clin Med 101: 553–557. 1983PubMedGoogle Scholar
  27. 27.
    Pasternak MS, Verret CR, Liu MA and Eisen HN: Serine esterase in cytotoxic T lymphocytes. Nature 322: 740. 1986CrossRefGoogle Scholar
  28. 28.
    Kahaleh MB, Osborn I and LeRoy EC: Increased Factor VIII/von Willebrand factor antigen and von Wille-brand factor activity in scleroderma and in Raynaud’s phenomenon. Ann Int Med 94: 482. 1981PubMedGoogle Scholar
  29. 29.
    Godin-Ostro E, Mitrane M, Heller I, et al.: Plasma plasminogen activator in systemic sclerosis. Arthritis Rheum 28 (suppl 4): s80. 1985CrossRefGoogle Scholar
  30. 30.
    Matucci-Cerinic M, Pignone A, Lotti T, et al.: Reduced angiotensin converting enzyme plasma activity in scleroderma. A marker of endothelial injury? J Rheumatol 17: 328–30. 1990Google Scholar
  31. 31.
    Matucci-Cerinic M, Pietrini U, Marabini S. Local venomotor response to intravenous infusion of substance P and glyceryl trinitrate in systemic sclerosis. Clin Exp Rheumatol 8: 561–565. 1990PubMedGoogle Scholar
  32. 32.
    BM Kahaleh, Pan-Sheng F, Matucci Cerinic M, Stefanovic Racic M, Ignarro L: Study of endothelial dependent relaxation in scleroderma. Arthritis Rheum 36 (suppl): B233. 1993Google Scholar
  33. 33.
    Kahaleh BM: Endothelin and endothelial dependent vasoconstrictor in scleroderma. Arthritis Rheum 34: 978–983. 1991PubMedCrossRefGoogle Scholar
  34. 34.
    Yamane K, Kashiwagi H, Suzuki N, et al.: Elevated plasma levels of endothelin-1 in systemic sclerosis. Arthritis Rheum 34: 243. 1991PubMedCrossRefGoogle Scholar
  35. 35.
    Yamane K, Miyouchi T, Suzuki N, et al.: Significance of plasma endothelin 1 levels in patients with systemic sclerosis. J Rheumatol 19: 1566–70. 1992PubMedGoogle Scholar
  36. 36.
    Vancheeswaran R, Magoulas T, Efrat G, Wheeler-Jones C, Olsen I, Penny R, Black CM: Circulating endothelin 1 levels in systemic sclerosis: a marker of fibrosis of vascualr dysfumction. J Rheumatol 21: 1838–44. 1994PubMedGoogle Scholar
  37. 37.
    Kanno K, Hirata Y, Emori T, et al.: Endothelin and Raynaud’s phenomenon. Am J Med 90: 130–2. 1991PubMedCrossRefGoogle Scholar
  38. 38.
    Evans CE, Patel MKN, Thompson R, Mc Evoy FA, Jayson MIV: Prostacyclin levels in systemic sclerosis. In “Current topics in Rheumatology: systemic sclerosis”. Black C, Myers AR, eds. New York: Gower, 264–266. 1985Google Scholar
  39. 39.
    Holt CM, Lindsey MN, Hughes P, et al.: Prostacyclin production by human umbilical vein endothelium in response to serum from patients with systemic sclerosis. Br J Rheum 28: 216–220. 1989CrossRefGoogle Scholar
  40. 40.
    Lindsey N, Henderson F, Malia R, Greaves M and Hughes P: Serum masks the inhibition of thrombin-in-duced prostacyclin release produced by anticardiolipin antibodies. Br J Rheum 31: 179–183. 1992CrossRefGoogle Scholar
  41. 41.
    Rustin MHA, Bull HA, Machin SJ, et al.: Serum from patients with Raynaud’s phenomenon inhibits prostacyclin production. J Invest Dermatol 89: 555–559. 1987PubMedCrossRefGoogle Scholar
  42. 42.
    Belch JJF, McLaren M, Anderson J, et al.: Increased prostacyclin metabolites and decreased red cell deformability in patients with systemic sclerosis and Raynaud’s syndrome. Prostaglandins Leuko Essent Fatty Acids, 17: 1–9. 1985Google Scholar
  43. 43.
    Reilly IAG, Roy L, Fitzgerald GA: Biosynthesis of thromboxane in patients with systemic sclerosis and Raynaud’s phenomenon. Br Med J, 292: 1037–1039. 1986CrossRefGoogle Scholar
  44. 44.
    Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809. 1993PubMedCrossRefGoogle Scholar
  45. 45.
    Hietaharju A, Jaaskelainen S, Kalimo H, Hietarinta M: Peripheral neuromuscular manifestations in systemic sclerosis (scleroderma). Muscle Nerve Nov; 16: 1204–1212. 1993CrossRefGoogle Scholar
  46. 46.
    Lori S, Matucci Cerinic M, Casale R, et al.: Peripheral nervous system involvement in systemic sclerosis: the median nerve as a target structure. Clin Exp Rheumatol; 14: 601–605. 1996PubMedGoogle Scholar
  47. 47.
    Matucci Cerinic M, Generini S, Pignone A, Casale R: The nervous system in systemic sclerosis (scleroderma). Rheum Dis Clin N Am 22: 879–892. 1996CrossRefGoogle Scholar
  48. 48.
    Dessein PHMC, Joffe BL, Metz RM, et al.: Autonomic dysfunction in systemic sclerosis: Sympathetic overactivity and instability. Am J Med; 93: 143–150. 1992PubMedCrossRefGoogle Scholar
  49. 49.
    Klimiuk PS, Taylor L, Baker RD, et al.: Autonomic neuropathy in systemic sclerosis. Ann Rheum Dis 47: 542–545. 1988PubMedCrossRefGoogle Scholar
  50. 50.
    Jamieson GG, Ludbrook J, Wilson A. Cold hypersensitivity in Raynaud’s phenomenon. Circulation 44: 254–264. 1971PubMedCrossRefGoogle Scholar
  51. 51.
    Freedman RR, Moten M, Migaly P, Mayes M. Cold-induced potentiation of alpha 2-adrenergic vasoconstriction in primary Raynaud’s disease. Arthritis Rheum 36: 685–690. 1993PubMedCrossRefGoogle Scholar
  52. 52.
    Burnstock G. Mechanism of action of peptide and non peptide vascular neurotransmitter system. J Cardiovasc Pharmacol 12 (suppl): S74–81. 1987CrossRefGoogle Scholar
  53. 53.
    Matucci-Cerinic M. Sensory neuropeptides and rheumatic diseases. Rheum Dis Clin N Am 19: 975–991. 1993Google Scholar
  54. 54.
    M Matucci-Cerinic, S Marroccu, P Cappugi, et al.: Reduced vasodilatory response in systemic sclerosis. Arthritis Rheum 38 (Suppl): 837. 1995CrossRefGoogle Scholar
  55. 55.
    Murrell DF: A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 28: 78–85. 1993PubMedCrossRefGoogle Scholar
  56. 56.
    Blann AD, Illingworth K, Jayson MIV: Mechanisms of endothelial cell damage in systemic sclerosis and Raynaud’s Phenomenon. J Rheumatol 20: 1325–1330. 1993PubMedGoogle Scholar
  57. 57.
    Bruckdorfer KR, Hillary JB, Bunce T, Vancheeswaran R, Black CM: Increased susceptibility to oxidation of low density lipoproteins isolated from patients with systemic sclerosis. Arthritis Rheum 38: 1060–1067. 1995PubMedCrossRefGoogle Scholar
  58. 58.
    Lundberg AC, Akesson A, Akesson B: Dietary intake and nutritional status in patients with systemic sclerosis. Ann Rheum Dis 51: 1143–1148. 1992PubMedCrossRefGoogle Scholar
  59. 59.
    Stein CM, Tanner SB, Awad JA, Roberts II LJ, Morrow, JD: Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthitis Rheum 39: 1146–1150. 1996CrossRefGoogle Scholar
  60. 60.
    Herrick AL, Worthington H, Rieley F, Clarke D, Schofield D, Braganza JM, Jayson MIV: Dietary intake of micronutrient antioxidant in relation to blood levels in patients with systemic sclerosis. J Rheumatol 23: 650–653. 1996PubMedGoogle Scholar
  61. 61.
    Herrick AL, Rieley F, Braganza JM, Jayson MIV: Difficulty in detecting reperfusion injury increment in oxidative stress among patients with primary Raynaud’s phenomenon and systemic sclerosis. J Rheumatol 22: 374–375. 1995PubMedGoogle Scholar
  62. 62.
    Morita A, Minami H, Sakakibara N, Sato K, Tsuji T AD: Elevated plasma Superoxide dismutase activity in patients with systemic sclerosis. J Dermatol Sci 11: 196–201. 1996PubMedCrossRefGoogle Scholar
  63. 63.
    Casciola-Rosen L, Wigley F, Rosen A: Scleroderma autoantigens are uniquely fragmented by metal catalyzed oxidation reactions: implications for pathogenesis. J Exp Med 185: 71–79. 1997PubMedCrossRefGoogle Scholar
  64. 64.
    Das DK, Engelman R, Cherian KM: Myocardial preservation, preconditioning and adaptation. NY Acad Sci 793: 1–533. 1996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • S. Generini
    • 1
  • M. Matucci Cerinic
    • 1
  1. 1.Department of Medicine Division of RheumatologyUniversity of FlorenceItaly

Personalised recommendations