Skip to main content

Lysinoalanine in Food and in Antimicrobial Proteins

  • Chapter
Impact of Processing on Food Safety

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 459))

Abstract

Heat and alkali treatment of food proteins widely used in food processing results in the formation of crosslinked amino acids such as lysinoalanine, ornithinoalanine, lanthionine, and methyl-lanthionine and concurrent racemization of L-amino acid isomers to D-ana-logues. The mechanism of lysinoalanine formation is a two-step process: first, hydroxide ion-catalyzed elimination of cysteine and serine residues to a dehydroalanine intermediate; second, reaction of the double bond of dehydroalanine with the ∈-NH2 group of lysine to form a lysinoalanine crosslink. The corresponding elimination-addition reaction of threonine produces methyl-dehydroalanine, which then reacts with the NH2 and SH groups to form methyl-lysinoalanine and methyl-lanthionine, respectively. The crosslinked amino acids lanthionine and methyl-lanthionine are formed by analogous nucleophilic addition reactions of the S H group of cysteine to dehydroalanine and methyl-dehydroalanine, respectively. Processing conditions that favor these transformations include high pH, temperature and exposure time. Factors which minimize lysinoalanine formation include the presence of SH-containing amino acids such as cysteine, N-acetyl-cysteine, and glutathione, dephosphorylation of O-phosphoryl esters, and acylation of ∈-NH2 groups of lysine side chains. The presence of lysinoalanine residues along a protein chain decreases digestibility and nutritional quality in rodents but enhances nutritional quality in ruminants. Protein-bound and free lysinoalanines are reported to induce enlargement of nuclei of rat kidney cells. All of the mentioned dehydro and crosslinked amino acids also occur naturally in certain peptide and protein antibiotics. These include duramycin, cinnamycin, epidermin, subtil in and the widely used food preservative nisin. Mechanistic rationalizations are offered for the observed antimicrobial activities of these compounds in relation to their structures. The cited findings and new research to better define the chemistry and dietary and antimi-crobial roles of lysinoalanine and related compounds should lead to better and safer foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antilla, P. The formation and determination of lysinoalanine in foods containing milk proteins. Meijerritierteellinen-Aikakauskirja 1987, 45, 1–12. [Finnish]

    Google Scholar 

  • Asquith, R. S.; Otterburn, M. S. Cystine-alkali reactions in relation to protein crosslinking. Adv. Exp. Med. Biol. 1977, 86B, 93–121.

    CAS  Google Scholar 

  • Brandon, D. L.; Bates, A. H.; Friedman, M. Enzyme-linked immunosorbent assay of soybean Kunitz trypsin inhibitor using monoclonal antibodies. J. Food Sci. 1988, 53, 97–101.

    Article  Google Scholar 

  • Brandon, D. L.; Bates, A. H.; Friedman, M. Monoclonal antibody-based immunoassay of Bowman-Birk protease inhibitor of soybeans. J. Agric. Food Chem. 1989, 37, 1192–1196.

    Article  CAS  Google Scholar 

  • De Weck-Gaudard, D.; Liardon, R.; Finot, P. A. Stereomeric composition of urinary lysinoalanine after ingestion of free or protein-bound lysinoalanine in rats. J. Agric. Food Chem. 1988, 36, 717–721.

    Article  Google Scholar 

  • Einarsson, H. The effect of pH and temperature on the antibacterial effect of Maillard reaction products. Lebensm. Wiss. Technol. 1987, 20, 56–58.

    CAS  Google Scholar 

  • Einarsson, H.; Goran Snygg, B. G.; Eriksson, C. Inhibition of bacterial growth by Maillard reaction products. J. Agric. Food Chem. 1983, 31, 1043–1047.

    Article  CAS  Google Scholar 

  • Einarsson, H.; Eklund, T.; Nes, I. F. Inhibitory mechanisms of Maillard reaction products against bacteria. Microbios 1988, 53, 27–36.

    CAS  Google Scholar 

  • Feron, V. J.; van Beek, L.; Slump, P.; Beems, R. B. Toxicological aspects of alkali-treatment of food proteins. In Biological Aspects of New Protein Foods; Alder Nissen, J., Ed.; Pergamon: Oxford, England, 1977.

    Google Scholar 

  • Finley, J. W.; Snow, J. T.; Johnston, P. H.; Friedman, M. Inhibition of lysinoalanine formation in food proteins. J. Food Sci. 1978, 43, 619–621.

    Article  CAS  Google Scholar 

  • Friedman, M., Ed. Protein-Metal Interactions. Plenum Press, New York, 1974.

    Google Scholar 

  • Friedman, M. Crosslinked amino acids — stereochemistry and nomenclature. In Protein Crosslinking: Nutritional and Medical Consequences; Friedman, M. Ed., Plenum Press, New Yor. Adv. Exp. Med. Biol. 1977, 86B, 1–27.

    Google Scholar 

  • Friedman, M. Inhibition of lysinoalanine synthesis by protein acylation. In Nutritional Improvement of Food and Feed Proteins; Friedman, M., Ed.; Plenum Press: New York. Adv. Exp. Med. Biol. 1978, 105, 613–648.

    Chapter  Google Scholar 

  • Friedman, M. Improvement in the safety of foods by SH-containing amino acids and peptides. J. Agric. Food Chem. 1994, 42, 3–20.

    Article  CAS  Google Scholar 

  • Friedman, M. Food browning and its prevention. J. Agric. Food Chem. 1996a, 44, 631–653.

    Article  CAS  Google Scholar 

  • Friedman, M. Nutritional value of proteins from different food sources. J. Agric. Food Chem. 1996b, 44, 6–29.

    Article  CAS  Google Scholar 

  • Friedman, M. Chemistry, biochemistry, and dietary role of potato polyphenols. J. Agric.Food Chem. 1997, 45, 1523–1540.

    Article  Google Scholar 

  • Friedman, M.; Finot, P. A. Nutritional improvement of bread with lysine and y-glutamyl-lysine. J. Agric. Food Chem. 1990, 55, 2011–2020.

    Article  Google Scholar 

  • Friedman, M.; Gumbmann, M. R. Nutritional improvement of soy flour through inactivation of trypsin inhibitors by sodium sulfite. J. Food Sci. 1986, 51, 1239–1241.

    Article  CAS  Google Scholar 

  • Friedman, M.; Gumbmann, M. R. Dietary significance of D-amino acids. In Absorption and Utilization of Amino Acids. Friedman, M., Ed.; CRC Press; Boca Raton, FL, 1989, Vol. 2, pp. 173–190.

    Google Scholar 

  • Friedman, M.; Liardon, R. Racemization kinetics of amino acid residues in alkali-treated food proteins. J. Agric. Food Chem. 1985, 33, 666–672.

    Article  CAS  Google Scholar 

  • Friedman, M.; Noma, A. T. Formation and analysis of phenylethylaminoalanine in food proteins. J. Agric. Food Chem. 1986, 497–502.

    Google Scholar 

  • Friedman, M.; Pearce, K. N. Copper (II) and cobalt (II) affinities of LL- and LD-lysinoalanine diastereoisomers: implications for food safety and nutrition. J. Agric. Food Chem. 1989, 37, 123–127.

    Article  CAS  Google Scholar 

  • Friedman, M.; Finley, J. W.; Yeh, Lai-Sue. Reactions of proteins with dehydroalanine. Adv. Exp. Med. Biol. 1977, 86B, 213–224.

    CAS  Google Scholar 

  • Friedman, M.; Noma, A. T.; Wagner, J. R. Ion-exchange chromatography of sulfur amino acids on a single-column amino acid analyzer. Analyt. Biochem. 1979, 98, 293–304.

    Article  CAS  Google Scholar 

  • Friedman, M.; Zahnley, J. C.; Wagner, J. R. Estimation of the disulfide content of trypsin inhibitors as S-β-(pyridylethyl)-L-cysteine. Analyt. Biochem. 1980, 106, 27–34.

    Article  CAS  Google Scholar 

  • Friedman, M.; Zahnley, J. C.; Masters, P. M. Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sci. 1981, 46, 127–131.

    Article  CAS  Google Scholar 

  • Friedman, M.; Gumbmann, M. R.; Savoie, L. The nutritional value of lysinoalanine as a source of lysine. Nutr. Rep. Int. 1982a, 26, 937–943.

    CAS  Google Scholar 

  • Friedman, M.; Diamond, M. J.; Broderick, G. L. Dimethylolurea as a tyrosine reagent and protein protectant against ruminai degradation. J. Agric. Food Chem. 1982b, 30, 72–77.

    Article  CAS  Google Scholar 

  • Friedman, M.; Levin, C. E.; Noma, A. T. Factors governing lysinoalanine formation in soybean proteins. J. Food Sci. 1984, 49, 1282–1288.

    Article  CAS  Google Scholar 

  • Friedman, M.; Grosjean, O. K.; Zahnley, J. C. Inactivation of metalloenzymes by food constituents. Food Chem. Toxicol. 1986, 24, 497–502.

    Article  Google Scholar 

  • Friedman, M.; Gumbmann, M. R.; Brandon, D. L.; Bates, A. H. Inactivation and analysis of soybean inhibitors of digestive enzymes. In Food Proteins; Kinsella, J. E.; Soucie, W. G., Eds.; The American Oil Chemists’ Society, Champaign: Illinois, 1989; pp 296–328.

    Google Scholar 

  • Furniss, D. E.; Hurrell, R. F.; De Weck, D.; Finot, P. A. The effect of lysinoalanine and N-e-fructose lysine on kidney, liver and urine trace elements in the rat. In Trace Elements in Man and Animals; Mills, C. F.; Bremmer, I.; Chesters, J. K., Eds.; Commonwealth Agricultural Bureau: Slough, U. K. 1985.

    Google Scholar 

  • Furniss, D. E.; Vuichoud, J.; Finot, P. A.; Hurrell, R. F. The effect of Maillard reaction products on zinc metabolism in the rat. Br. J. Nutr. 1989, 62, 739–749.

    Article  CAS  Google Scholar 

  • Gross, E. α, β-Unsaturated amino acids in peptides and proteins. In Protein Crosslinking: Biochemical and Molecular Aspects; Friedman, M., Ed.; Plenum Press: New York. Adv. Exp. Med. Biol. 1977, 86A, 131–153.

    Google Scholar 

  • Gould, D. H.; MacGregor, J.. T Biological effects of alkali-treated protein and lysinoalanine: an overview. Adv. Exp. Med. Biol. 1911, 86B, 29–48.

    Google Scholar 

  • Hasegawa, K.; Okamoto, N.; Ozawa, H.; Kitajima, S; Takado, Y. Limits and sites of lysinoalanine formation in lysozyme, α-lactalbumin and αsl- and β-caseins by alkali treatment. Agric. Biol. Chem. 1981, 45, 1645–1651.

    Article  CAS  Google Scholar 

  • Hayashi, R. Lysinoalanine as a metal ion chelator. An implication for toxicity. J. Biol. Chem. 1982, 45, 1430–1431.

    Google Scholar 

  • Hosoda, K.; Ohya, M.; Kohno, T.; Maeda, T.; Endo, S.; Wakamatsu, K. Structure determination of an immunopotentiator peptide, cinnamycin, complexed with lysophosphatidylethanolamine by 1H-NMR. J. Biochem. 1996, 226–230.

    Google Scholar 

  • Jung, G. Lantibiotics - ribosomally synthesized biologically active polypeptides containing sulfide bridges and α, β-didehydroamino acids. Angew. Chem. Engl Ed. 1991, 50, 1051–1068.

    Article  Google Scholar 

  • Kaletta, C.; Entian, K. D.; Jung, G. Prepeptide sequence of cinnamycin: the first structural gene of a duramycintype lantibiotic. Eur. J. Biochem. 1991, 199, 411–415.

    Article  CAS  Google Scholar 

  • Karayiannis, N. I.; MacGregor, J. T.; Bjeldanes, L. F. Biological effects of alkali-treated soy protein and lactalbumin in the rat and mouse. Food Cosmet. Toxicol. 1979, 17, 585–590.

    Article  CAS  Google Scholar 

  • Katsuta, K.; Hayakawa, I. Effects of reducing agents on rheological properties, inhibition of lysinoalanine formation, and spinnability of soy protein fibers. Agric. Biol. Chem. 1984, 48, 2927–2933.

    Article  CAS  Google Scholar 

  • Kolonkaya, D. Renal toxicity of soybean protein containing lysinoalanine. DOGA TU Bio D. 1986, 394–402. [Turkish]

    Google Scholar 

  • Langhendries, J. P.; Hurrell, R. F.; Furniss, D. E.; Hirschenhuber, C.; Finot, P. A.; Bernard, A.; Battisti, O.; Bertrand, J. M.; Senterre, J. Maillard reaction products and lysinoalanine: urinary excretion and the effects on kidney function of preterm infants fed heat-processed milk formula. J. Pediatric Gastroentorol. Nutr. 1992, 14, 62–70.

    Article  CAS  Google Scholar 

  • Liardon, R.; Friedman, M; Philippossian, G. Racemization kinetics of free and protein bound lysinoalanine (LAL) in strong acid media. Isomeric composition of protein bound LAL. J. Agric. Food Chem. 1991, 39, 531–537.

    Article  CAS  Google Scholar 

  • Liu, W.; Hansen, J. N. The antimicrobial effects of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanisms. Appl. Env. Microbiol. 1993, 59, 648–651.

    CAS  Google Scholar 

  • Masri, M. S.; Friedman, M. Transformation of dehydroalanine to S-β-(2-pyridylethyl)-L-cysteine side chains. Biochem. Biophys. Res. Commun. 1982, 104, 321–325.

    Article  CAS  Google Scholar 

  • Meyer, M.; Klostermeyer, H.; Kleyn, D. H. Reduced formation of lysinoalanine in enzymatically dephosphorylated casein. Z. Lebensm.-Untersuch. Forsch. 1981, 172, 446–448.

    Article  CAS  Google Scholar 

  • Morris, S.; Walsh, R. C.; Hansen, J. N. Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem. 1984, 259, 13590–13594.

    CAS  Google Scholar 

  • Nishino, N.; Uchida, S. Formation of lysinoalanine following alkaline processing of soya bean meal in relation to the degradability of protein in the rumen. J. Sci. Food Agric. 1995, 68, 59–64.

    Article  Google Scholar 

  • Patchornik, A.; Sokolovsky, M. Chemical interaction between lysine and dehydroalanine in modified bovine pancreatic ribonuclease. J. Am. chem. Soc. 1964, 86, 1860–1861.

    Article  CAS  Google Scholar 

  • Pearce, K. N.; Friedman, M. The binding of copper and other metal ions by lysinoalanine and related compounds. J. Agric. Food Chem. 1988, 36, 707–717.

    Article  CAS  Google Scholar 

  • Pearce, K. N.; Karahalios, D.; Friedman, M. Ninhydrin assay for proteolysis in ripening cheese. J. Food Sci. 1988, 52, 432–435.

    Article  Google Scholar 

  • Pellegrino, L.; Resmini, P.; DeNoni, I.; Masotti, F. Sensitive determination of lysinoalanine for distinguishing natural from imitation mozzarella cheese. J. Dairy Sci. 1996, 79, 725–734.

    Article  CAS  Google Scholar 

  • Pompei, C.; Rossi, M.; Mare, F. Protein quality in commercial milk-based infant formulas. J. Food Quality 1987, 70, 375–391.

    Google Scholar 

  • Rehner, G.; Walter, T. H. Effect of Maillard products and lysinoalanine on the bioavailability of iron, copper and zinc. Z. Ernahrungswiss. 1991, 30, 50–55.

    Article  CAS  Google Scholar 

  • Robbins, K. R.; Baker, D. H.; Finley, J. W. Studies on the utilization of lysinoalanine and lanthionine. J. Nutr. 1980, 110, 907–914.

    CAS  Google Scholar 

  • Sahl, H. G.; Jack, R. W.; Bierbaum, G. Biosynthesis and biological activities of lantibiotics with unique posttranslational modifications. Eur. J. Biochem. 1995, 230, 827–853.

    Article  CAS  Google Scholar 

  • Snow, J. T.; Finley, J. W.; Friedman, M. Relative reactivities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyl dehydroalanine methyl ester. Int. J. Peptide Protein Res. 1976, 7, 461–466.

    Article  Google Scholar 

  • Sternberg, M.; Kim, C. Y. Lysinoalanine formation in protein food ingredients. Adv. Exp. Med. Biol. 1977, 86B, 73–84.

    CAS  Google Scholar 

  • Tas, A. C.; Kleipool, R. J. C. The stereoisomers of lysinoalanine. Lebensm. Wiss. Technol 1979, 9, 360–363.

    Google Scholar 

  • Touloupis, C.; Vassiliadis, A. Lysinoalanine formation in wool after treatments with some phosphate salts. Adv. Exp. Med. Biol. 1977, 86B, 187–195.

    CAS  Google Scholar 

  • Van Beek, L.; Feron, V. J.; de Groot, A. P. Nutritional effects of alkali-treated soy protein in rats. J. Nutr. 1974, 104, 1630–1634.

    Google Scholar 

  • Wakamatsu, K.; Choung, S. Y; Kobayashi, T.; Inoue, K.; Higashijima, T.; Miyazawa, T. Complex formation of peptide antibiotic RoO9–098 with lysophosphatidylethanolamine. 1H NMR analysis in dimethyl sulfoxide solution. Biochemistry 1990, 29, 113–118.

    Article  CAS  Google Scholar 

  • Whitaker, J. R.; Feeney, R. E. Behavior of O-glycosyl and O-phosphoryl proteins in alkaline solution. Adv. Exp. Med. Biol. 1977, 86B, 155–175.

    CAS  Google Scholar 

  • Woodard, J. C.; Short, D. D.; Alvarez, M. R.; Reyniers, J. Biologic effects of lysinoalanine. In Protein Nutritional Quality of Foods and Feeds; Friedman, M., Ed.; Marcel Dekker: New York, 1975; pp 595–616.

    Google Scholar 

  • Zimmermann, N.; Freund, S.; Fredenhagen, A.; Jung, G. Solution structure of lantibiotics duramycin B and C. Eur. J. Biochem. 1993, 216, 419–428.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedman, M. (1999). Lysinoalanine in Food and in Antimicrobial Proteins. In: Jackson, L.S., Knize, M.G., Morgan, J.N. (eds) Impact of Processing on Food Safety. Advances in Experimental Medicine and Biology, vol 459. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4853-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4853-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7201-1

  • Online ISBN: 978-1-4615-4853-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics