Skip to main content

The Structure of Crystalline Bovine Heart Cytochrome c Oxidase

  • Chapter
Frontiers of Cellular Bioenergetics

Abstract

Cytochrome c oxidase, the terminal enzyme in cell respiration, reduces molecular oxygen (O2) to water. The enzyme couples oxygen reduction with the active transport of protons (Ferguson-Miller and Babcock, 1996; Malmström, 1990). Since its discovery (Warburg, 1924), this enzyme has been one of the most extensively investigated systems in bioenergetics, because of its physiological importance. The redox-active centers of the enzyme contain the transition metals, Fe and Cu, and these active-site metals have been the focus of a variety of spectroscopic investigations on the intriguing O2 reduction process (Ferguson-Miller and Babcock, 1996; Malmström, 1990). So far, the enzyme has been isolated from about 80 different organisms, and most of the amino acid sequences from each of these organisms have been determined. Buse and co-workers determined the amino acid sequence of the bovine enzyme, and this pioneering work has been the basis for subsequent structure-function investigations on the enzyme (Hensel and Buse, 1990; Meinecke and Buse, 1986). An ingenious investigation of the subunit composition of the enzyme performed by Kadenback is also a benchmark for the structural characterization of the enzyme (Kadenbach et al., 1983). On the other hand, time-resolved resonance Raman spectroscopy has been a powerful experimental technique for identifying the structure of the intermediate species during the O2 reduction, such as the dioxygen (Fe2+-O2), the ferryl oxide (Fe4+=O), and the hydroxide (Fe3+-OH) intermediates (Ogura et al., 1991; Kitagawa and Ogura, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony, G., Reimann, A., and Kadenbach, B., 1993, Tissue specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa, Proc. Natl. Acad. Sci. USA 90:1652–1656.

    Article  PubMed  CAS  Google Scholar 

  • Antonini, E., Brunori, M., Colosimo, A., Greenwood, C., and Wilson, M. T., 1977, Oxygen “pulsed” cytochrome c oxidase: Functional properties and catalytic relevance, Proc. Natl. Acad. Sci. USA 74:3128–3125.

    Article  PubMed  CAS  Google Scholar 

  • Blair, D. F., Ellis, W. R., Wang, H., Gray, H. B., and Chan, S. I., 1986, Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependencies of the cytochrome potentials, J. Biol. Chem. 261:11524–11537.

    PubMed  CAS  Google Scholar 

  • Capitanio, N., Capitanio, G., Demarinis, D. A., De Nitto, E., Massari, S., and Papa, S., 1996, Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: Influence of the rate of electron flow and transmembrane ΔpH, Biochemistry 35:10800–10806.

    Article  PubMed  CAS  Google Scholar 

  • Caughey, W. S., 1971, Structur-function relationship in cytochrome c oxidase and other nemo-proteins. Adv. Chem. Ser. 100:248–270.

    Article  Google Scholar 

  • Caughey, W. S., Wallace, W J., Volpe, J. A., and Yoshikawa S., 1976, Cytochrome c oxidase, in: The Enzymes, vol. 13C (R D. Boyer, ed.), pp. 299–344, Academic Press, New York.

    Google Scholar 

  • Chotia, C., Levitt, M., and Richardson, D., 1987, Structure of proteins: Packing of α-helices and pleated sheets, Proc. Natl. Acad. Sci. USA 74:4130–4134.

    Article  Google Scholar 

  • Espe, M. P., Hosler, J. P., Ferguson-Miller, S., Babcock, T., and McCracken, J., 1995, A continuous wave and pulsed EPR characterization of the Mu2+ binding site in Rhodobacter sphaeroides cytochrome c oxidase, Biochemistry 34:7593–7602.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Miller, S., and Babcock, G. T., 1996, Heme/copper terminal oxidases, Chem. Rev. 96:2889–2907.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Miller, S., Brautigen, D. L., and Margoliash, E., 1976, Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes with binding to mitochondrial cytochrome c oxidase, J. Biol. Chem. 251:1104–1115.

    PubMed  CAS  Google Scholar 

  • Frank, V., and Kadenbach, B., 1996, Regulation of the H+/e- stoichiometry of cytochrome c oxidase from bovine heart by intermitochondrial ATP/ADP ratios, FEBS Lett. 382:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Horsman, J. A., Berry, E., Shapleigh, J. P., Alben, J. O., and Gennis, R. B., 1994, A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA, Biochemistry 33:3113–3119.

    Article  PubMed  CAS  Google Scholar 

  • Gelles, J., Blair, D. F., and Chan, S. I., 1986, The proton-pumping site of cytochrome c oxidase: A model of its structure and mechanism, Biochim. Biophys. Acta 853:205–236.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, Q. H., and Greenwood, C., 1963, Reactions of cytochrome oxidase with oxygen and carbon monoxide, Biochem. J. 86:54–554.

    Google Scholar 

  • Gibson, Q. H., Greenwood, C., Wharton, D. C., and Palmer, G., 1965, The reaction of cytochrome oxidase with cytochrome c, J. Biol. Chem. 240:888–894.

    PubMed  CAS  Google Scholar 

  • Gray, K. A., Grooms, M., Mylhykallio, H., Moomaw, C., Slaughter, C., and Daldal, F., 1994, Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center, Biochemistry 33:3120–3127.

    Article  PubMed  CAS  Google Scholar 

  • Han, S., Ching, Y., and Rousseau, D. L., 1990, Primary intermediate in the reaction of oxygen with fully reduced cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 87:2491–2495.

    Article  PubMed  CAS  Google Scholar 

  • Hensel, S., and Buse, G., 1990, Studies on cytochrome-c oxidase, XIV, Biol. Chem. Hoppe-Seyler 371:411–422.

    Article  PubMed  CAS  Google Scholar 

  • Hill, B. C., 1994, Modeling the sequence of electron transfer reaction in the single turnover of reduced, mammalian cytochrome c oxidase, J. Biol. Chem. 269:2419–2425.

    PubMed  CAS  Google Scholar 

  • Hosier, J. P., Espe, M. P., Zhen, Y., Babcock, G. T., and Ferguson-Miller, S., 1995, Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides, Biochemistry 34:7586–7592.

    Article  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H., 1995, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, L. H., 1986, The iron-sulfur proteins: An overview, in: Iron-Sulfur Protein Research (H. Matsubara, Y. Katsube, and K. Wada, eds.), pp. 3–21, Springer-Verlag, Berlin.

    Google Scholar 

  • Kadenbach, B., Ungibauer, M., Jarausch, J., Büge, U., and Kuhn-Nentwig, L., 1983, The complexity of respiratory complexes, Trends Biochem. Sci. 8:398–400.

    Article  CAS  Google Scholar 

  • Kitagawa, T., and Mizutani, Y., 1994, Resonance Raman spectra of highly oxidized metallo-porphyrins and heme proteins, Coordination Chem. Rev. 135/136:685–735.

    Article  CAS  Google Scholar 

  • Kitagawa, T., and Ogura, T., 1997, Oxygen activation mechanism at the binuclear site of heme-copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy, Prog. Inorg. Chem. 45:431–479.

    Article  CAS  Google Scholar 

  • Kröneck, P. M. H., Antholine, W. A., Riester, J., and Zumft, W. G., 1988, The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II), Cu(I)] binuclear center: A multifrequency electron paramagnetic resonance investigation, FEBS Lett. 242:70–74.

    Article  PubMed  Google Scholar 

  • Ludwig, B., and Schatz, G., 1980, A two-subunit cytochrome c oxidase (cytochrome a a3) from Paracoccus denitrificans, Proc. Natl. Acad. Sci. USA 77:196–200.

    Article  PubMed  CAS  Google Scholar 

  • Malmström, B. G., 1990, Cytochrome c oxidase as a redox-linked proton pump, Chem. Rev. 90:1247–1260.

    Article  Google Scholar 

  • Meinecke, L., and Buse, G., 1986, Studies on cytochrome-c oxidase, XIII, Biol. Chem. Hoppe-Seyler 367:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, P., and Wrigglesworth, J. M., 1988, Routes of cytochrome a 3 reduction, Ann. NY Acad. Sci. 550:59–67.

    Article  Google Scholar 

  • Ogura, T., Takahashi, T., Shinzawa-Itoh, K., Yoshikawa, S., and Kitagawa, T., 1990, Observation of the FeII-O2 stretching Raman band for cytochrome oxidase compound A at ambient temperature, J. Am. Chem. Soc. 112:5630–5631.

    Article  CAS  Google Scholar 

  • Ogura, T., Takahashi, T., Shinzawa-Itoh, K., Yoshikawa, S., and Kitagawa, T., 1991, Time-resolved resonance Raman investigation of cytochrome oxidase catalysis: Observation of a new oxygen-isotope sensitive Raman band, Bull. Chem. Soc. Jpn. 64:2901–2907.

    Article  CAS  Google Scholar 

  • Ogura, T., Takahashi, S., Hirota, S., Shinzawa-Itoh, K., Yoshikawa, S., Appelman, E. H., and Kitagawa, T., 1993, Time-resolved resonance Raman elucidation of the pathway for dioxygen reduction by cytochrome c oxidase, J. Am. Chem. Soc. 115:8527–8536.

    Article  CAS  Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M., and Wikström, M., 1989, Cytochrome o(bo) is a proton pump in Paracoccus denitrificans and Escherichia coli, FEBS Lett. 249:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, N. C., 1982, Specificity and binding affinity of phospholipids to the high-affinity cardiolipin sites of beef heart cytochrome c oxidase, Biochemistry 21:184–188.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. A., 1989, X-ray absorption spectroscopic investigations of cytochrome c oxidase structure and function, Annu. Rev. Biophys. Biophys. Chem. 18:137–158.

    Article  PubMed  CAS  Google Scholar 

  • Shinzawa-Itoh, K., Ueda, H., Yoshikawa, S., Aoyama, H., Yamashita, E., and Tsukihara, T., 1995, Effects of ethyleneglycol chain length of dodecyl polyethyleneglycol monoether on the crystallization of bovine heart cytochrome c oxidase, J. Mol. Biol. 246:572–575.

    PubMed  CAS  Google Scholar 

  • Steffens, G. C. M., Souliname, T., Wolff, G., and Buse, G., 1993, Stoichiometry and redox behavior of metals in cytochrome-c oxidase, Eur. J. Biochem. 213:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  • Suarez, M. D., Revzin, A., Narlock, R., Kempner, E. S., Thomson, D. A., and Ferguson-Miller, S., 1984, The functional and physical form of mammalian cytochrome c oxidase determined by gel filtration, radiation inactivation, and sedimentation equilibrium analysis, J. Biol. Chem. 259:13791–13799.

    PubMed  CAS  Google Scholar 

  • Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M., 1993, Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry 32:10923–10928.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1995, Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science 269:1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1996, The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science 272:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Van Gelder, B. F., and Beinert, H., 1969, Studies of the heme component of cytochrome c oxidase by EPR spectroscopy, Biochim. Biophys. Acta 189:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Varotsis, C., Woodruff, W H., and Babcock, G. T., 1990, Time resolved Raman detection of v(Fe-O) in an early intermediate in the reaction of O2 by cytochrome oxidase, J. Am. Chem. Soc. 112:1297.

    Article  CAS  Google Scholar 

  • Wang, H., Blair, D. F., Ellis, W. R., Gray, H. B., and Chan, S. I., 1986, Temperature dependence of the reduction potential of CuA in carbon monoxide inhibited cytochrome c oxidase, Biochemistry 25:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O., 1924, Üben Eisen, den sauerstoffubentragenden Bestandteil des Atmungsfermentes, Biochem. Z. 152:479–494.

    Google Scholar 

  • Wikström, M. K. F., 1977, Proton pump coupled to cytochrome c oxidase in mitochondria, Nature 266:271–273.

    Article  PubMed  Google Scholar 

  • Wikström, M., and Morgan, J. E., 1992, The dioxygen cycle, J. Biol. Chem. 267:10266–10273.

    PubMed  Google Scholar 

  • Wikström, M., Krab, S., and Saraste, M., 1981, Cytochrome Oxidase-α Synthesis, Academic Press, London.

    Google Scholar 

  • Wikström, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M., and Verkhovsky, M. I., 1994, Mechanism of proton translocation by the respiratory oxidases. The histidine cycle, Biochim. Biophys. Acta 1187:106–111.

    Article  PubMed  Google Scholar 

  • Woodruff, W. H., Einersdóttir, Ó., Dyer, R. B., Bagley, K. A., Palmer, G., Atherton, S. J., Goldbeck, R. A., Dawes, T. D., and Kliger, D. S., 1991, Nature and functional implications of the cytochrome a 3 transients after photodissociation of CO-cytochrome oxidase, Proc. Natl. Acad. Sci. USA 88:2588–2592.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W., Chang, C. K., Varotsis, C., Babcock, G. T., Puustinen, A., and Wikström, M., 1992, Structure of the heme O prosthetic group from the terminal quinol oxidase of Escherichia coli, J. Am. Chem. Soc. 114:1182–1187.

    Article  CAS  Google Scholar 

  • Yoshikawa, S., Choc, M. G., O’Toole, M. C., and Caughey, W. S., 1977, An infrared study of CO binding to heart cytochrome c oxidase and hemoglobin A, J. Biol Chem. 252:5498–5508.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshikawa, S., Shinzawa-Itoh, K., Tsukihara, T. (1999). The Structure of Crystalline Bovine Heart Cytochrome c Oxidase. In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics