Skip to main content

Crystallization, Structure, and Possible Mechanism of Action of Cytochrome c Oxidase from the Soil Bacterium Paracoccus denitrificans

  • Chapter
Frontiers of Cellular Bioenergetics

Abstract

Cellular respiration is one of the most fundamental processes of life. Most of the energy available to animals is generated by it. In the so-called respiratory chain, four large membrane protein complexes act together to oxidize substrates and finally to reduce oxygen. In the respiratory chains of mitochondria and in many bacteria, either NADH or succinate, both formed preferentially in the citric acid cycle, are oxidized by complex I or complex II, respectively, and ubiquinol is generated. Ubiquinol is oxidized by complex III, also known as the cytochrome bc 1 complex, and the electrons are transferred to cytochrome c. Cytochrome c is oxidized by complex IV, the cytochrome c oxidase (see Fig. 1). The electrons of cytochrome c are used to reduce molecular oxygen, and water is formed. Complexes I, III, and IV are able to transport (or pump) protons across the membrane in addition to those protons that are released from ubiquinol on the periplasmic side of the bacterial membrane (or in the intermembrane space of mitochondria) by complex III, or consumed on the cytoplasmic (or matrix) side in complex IV upon water formation. The electrochemical potential difference of protons is used to drive ATP synthesis by the H+-translocating ATPase. In some sense, the respiratory chain catalyzes the detonating gas reaction, but it has to make certain that energy is stored in the electrochemical proton gradient and that no dangerous side products are formed, especially in the reaction catalyzed by the cytochrome c oxidase. Generation of superoxides or peroxides would be dangerous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock, G. T., and Wikström, M., 1992, Oxygen activation and the conservation of energy in cell respiration, Nature 356:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, N. J., Barr, M. E., Woodruff, W. H., von der Ooost, J., and deVries, S., 1994, Metalmetal bonding in biology: EXAFS evidence for a 2.5 Å copper-copper bond in the CuA center of cytochrome oxidase, Biochemistry 33:10401–10407.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, M. W., Thomas, J. W., and Gennis, R. B., 1994, The cytochrome oxidase superfamily of redox-driven proton pumps, Trends Biochem. Sci. 19:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Castresana, J., and Saraste, M., 1995, Evolution of energetic metabolism: The respiration-early hypothesis, Trends Biochem. Sci. 20:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Castresana, J., Lübben, M., Saraste, M., and Higgins, D. G., 1994, Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen, EMBO J. 13:2516–2525.

    PubMed  CAS  Google Scholar 

  • Einarsdóttir, Ó., 1995, Fast reactions of cytochrome oxidase, Biochim. Biophys. Acta 1229:129–147.

    Article  PubMed  Google Scholar 

  • Einarsdóttir, Ó., Geogiadis, K. E., and Sucheta, A., 1995, Intramolecular electron transfer and conformational changes in cytochrome c oxidase, Biochemistry 34:496–508.

    Article  PubMed  Google Scholar 

  • Fann, Y. C., Ahmed, I., Blackburn, N. J., Boswell, J. S., Verkhovskaya, M. L., Hoffman, B. M., and Wikström, M., 1995, Structure of CuB in the binuclear heme-copper center of the cytochrome aa 3 -type quinol oxidase from Bacillus subtilis: An ENDOR and EXAFS study, Biochemistry 34:10245–10255.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, J. A., Lappalainen, P., Zumft, W. G., Saraste, M., and Thomson, A. J., 1995, Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome c oxidase complex of Paracoccus denitrificans, Eur. J. Biochem. 232:294–303.

    Article  PubMed  CAS  Google Scholar 

  • Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., García-Horsman, A., Schmidt, E., Hosier, J., Babcock, G. T., and Gennis, R. B., 1995, Possible proton relay pathways in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 92:1604–1608.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R. B., 1994, The superfamily of heme-copper respiratory oxidases, J. Bacteriol. 176:5587–5600.

    PubMed  CAS  Google Scholar 

  • Garcia-Horsman, J. A., Puustinen, A., Gennis, R. B., and Wikström, M., 1995, Proton transfer in cytochrome bo 3 ubiquinol oxidase of Escherichia coli: Second-site mutations in subunit I that restore proton pumping in the mutant Asp 135 → Asn, Biochemistry 34:4428–4433.

    Article  PubMed  CAS  Google Scholar 

  • Hallén, S., Brzezinski, P., and Malmström, B. G., 1994, Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site, Biochemistry 33:1467–1472.

    Article  PubMed  Google Scholar 

  • Haltia, T., Semo, N., Arrondo, J. L. R., Goñi, F. M., and Freire, E., 1994, Thermodynamic and structural stability of cytochrome c oxidase from Paracoccus denitrificans, Biochemistry 33:9731–9740.

    Article  PubMed  CAS  Google Scholar 

  • Henkel, G., Müller, A., Weissgräber, S., Buse, G., Soulimane, T., Steffens, G. C. M., and Nolting, H.-E, 1995, The active sites of the native cytochrome c oxidase from bovine heart mitochondria: EXAFS-spectroscopic characterization of a novel homobinuclear copper center (CuA) and of the heterobinuclear Fea3-CuB center, Angew. Chem. Int. Ed. Engl. 34:1488–1492.

    Article  CAS  Google Scholar 

  • Hill, B.C., 1994, Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase, J. Biol. Chem. 269:2419–2425.

    PubMed  CAS  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H., 1995, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.

    Article  PubMed  CAS  Google Scholar 

  • Kleymann, G., Ostermeier, C., Ludwig, B., Skerra, A., and Michel, H., 1995, Engineered Fv fragments as a tool for the one-step purification of integral multisubunit membrane protein complexes, Biotechnology 13:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, S., Källebring, B., Wittung, P., and Malmström, B. G., 1995, The CuA center of cytochrome c oxidase: Electronic structure and spectra of models compared to the properties of CuA domains, Proc. Natl. Acad. Sci. USA 92:7167–7171.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Lemieux, L., and Gennis, R. B., 1993, Genetic fusion of subunits I, II, and III of the cytochrome bo ubiquinol oxidase from Escherichia coli results in a fully assembled and active enzyme, Biochemistry 32:7692–7697.

    Article  PubMed  CAS  Google Scholar 

  • Malatesta, F., Antonini, G., Sarti, P., and Brunori, M., 1995, Structure and function of a molecular machine: cytochrome c oxidase, Biophys. Chem. 54:1–33.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R., and Rich, P. R., 1994, Proton uptake by cytochrome c oxidase on reduction and on ligand binding, Biochim. Biophys. Acta 1186:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J. E., Verkhovsky, M. I., and Wikström, M., 1994, The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases, J. Bioenerg. Biomembr. 26:699–608.

    Article  Google Scholar 

  • Musser, S. M., and Chan, S. I., 1995, Understanding the cytochrome c oxidase proton pump: Thermodynamics of redox linkage, Biophys. J. 68:2543–2555.

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H., 1995, Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase, Nature Struct. Biol. 2:842–846.

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier, C., Iwata, S., and Michel, H., 1996, Cytochrome c oxidase, Cum Opin. Struct. Biol. 6:460–466.

    Article  CAS  Google Scholar 

  • Rich, P. R., 1995, Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases, Aust. J. Plant Physiol. 22:479–486.

    Article  CAS  Google Scholar 

  • Riistama, S., Puustinen, A., Garcia-Horsman, A., Iwata, S., Michel, H., and Wikström, M., 1996, Chanelling of dioxygen into the respiratory enzyme, Biochim. Biophys. Acta 1275:1–4.

    Article  PubMed  Google Scholar 

  • Saraste, M., 1990, Structural features of cytochrome oxidase, Q. Rev. Biophys. 23:331–366.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. W., Lemieux, L. J., Alben, J. O., and Gennis, R. B., 1993a. Site-directed mutagenesis of highly conserved residues in helix VIII of subunit I of the bo ubiquinol oxidase from Escherichia coli. An amphipathic transmembrane helix that may be important in conveying protons to the binuclear center, Biochemistry 32:11173–11180.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., Wikström, M., 1993b. Substitution of asparagine-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry 32:10923–10928.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1995, Structure of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science 269:1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1996, The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science 272:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Verkhovsky, M. I., Morgan, J. E., and Wikström, M., 1995, Control of electron delivery to the oxygen reduction site of cytochrome c oxidase: A role for protons, Biochemistry 34:7483–7491.

    Article  PubMed  CAS  Google Scholar 

  • Verkhovsky, M. I., Morgan, J. E., Puustinen, A., and Wikström, M., 1996, Kinetic trapping of oxygen in cell respiration, Nature 380:268–270.

    Article  PubMed  CAS  Google Scholar 

  • Wikström, M., 1989, Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping, Nature 338:776–778.

    Article  PubMed  Google Scholar 

  • Wilmanns, M., Lappalainen, P., Kelly, M., Sauer-Eriksson, E., and Saraste, M., 1995, Crystal structure of the membrane-exposed domain from a respiratory quinol oxidase complex with an engineered dinuclear copper center, Proc. Natl. Acad. Sci. USA 92:11955–11959.

    Article  PubMed  CAS  Google Scholar 

  • Witt, H., Ludwig, M., 1997, Isolation, analysis and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans, J. Biol. Chem. 272:5514–5517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michel, H., Iwata, S., Ostermeier, C. (1999). Crystallization, Structure, and Possible Mechanism of Action of Cytochrome c Oxidase from the Soil Bacterium Paracoccus denitrificans . In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics