Skip to main content

Proton Pumps of Respiratory Chain Enzymes

  • Chapter
Frontiers of Cellular Bioenergetics

Abstract

Redox and photoredox enzymes, plugged through the osmotic barrier of the coupling membranes, the mitochondrial inner membrane of eukaryotic cells, the plasma membrane of bacteria, and the thylakoid membrane of chloroplasts, convert chemical and light energy, respectively, into proticity, thus creating a transmembrane protonic potential difference, Δp (Fig. 1). In turn, Δp is drawn up by proticity utilizers and plugged through the same coupling membranes (Mitchell, 1966, 1987a; Papa, 1976; Boyer et al., 1977). Proticity is essentially used to drive phosphorylation of ADP to ATP by the FOF1-ATP synthase of coupling membranes (Fig. 1). It also can drive solute transport by proton coupled transporters (Papa et al., 1970) and mechanical work as in bacterial flagella (Macnab, 1992), and can result in heat production in brown adipose tissue mitochondria (Nicholls and Locke, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, I. P., Leslie, A. G. W., Lutter, R., and Walker, J., 1994, Structure at 2.8 Å resolution of Fl-ATPase from bovine heart mitochondria, Nature 370:621–628.

    Article  PubMed  CAS  Google Scholar 

  • Adelroth, P., Svensson Ek M., Mitchell, D. M., Gennis, R., and Brzezinski, P., 1997, Glutamate 286 in cytochrome aa 3 from Rhodobacter sphaeroides is involved in proton uptake during the reaction of the fully reduced enzyme with dioxygen, Biochemistry 36:13824–13829.

    Article  PubMed  CAS  Google Scholar 

  • Adelroth, P., Gennis, R., and Brzezinski, P., 1988, Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides, Biochemistry 37:2470–2476.

    Article  Google Scholar 

  • Azzone, G. F., and Luvisetto, S., 1988, Molecular events in coupling and uncoupling of oxidative phosphorylation, Ann. NY Acad. Sci. 550:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Babcock, G. T., and Callahan, P. M., 1983, Redox-linked hydrogen bond strength changes in cytochrome a: Implications for a cytochrome oxidase proton pump, Biochemistry 22:2314–2319.

    Article  PubMed  CAS  Google Scholar 

  • Babcock, G. T., and Wikström, M., 1992, Oxygen activation and the conservation of energy in cell respiration, Nature 356:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Berry, E. A., Shulmeister, V. M., Huang, L., and Kim, S.-H., 1995, A new crystal form of bovine heart ubiquinol:cytochrome c oxidoreductase: Determination of space group and unit-cell parameters, Acta Crystallogr. D 51:235–239.

    Article  PubMed  CAS  Google Scholar 

  • Blair, D. F., Gelles, J., and Chan, S. I., 1986, Redox-linked proton translocation in cytochrome oxidase: The importance of gating the electron flow, Biophys. J. 50:713–733.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C., 1977, Oxidative phosphorylation and photophosphorylation, Annu. Rev. Biochem. 46:955–1026.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, U., 1996, Energy conservation by bifurcated electron-transfer in the cytochrome bc 1 complex, Biochim. Biophys. Acta 1275:41–46.

    Article  PubMed  Google Scholar 

  • Brandt, U., 1997, Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction, Biochim. Biophys. Acta 1318:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Brasseur, R., 1988, Calculation of the three-dimensional structure of Saccharomyces cerevisiae cytochrome b inserted in a lipid matrix, J. Biol. Chem. 263:12571–12575.

    PubMed  CAS  Google Scholar 

  • Brown, G. C., 1989, The relative proton stoichiometrics of the mitochondrial proton pumps are independent of the proton motive force, J. Biol. Chem. 264:14704–14709.

    PubMed  CAS  Google Scholar 

  • Brown, G. C., and Brandt, M. D., 1986, Changes in permeability to protons and other cations at high proton motive force in rat-liver mitochondria, Biochem. J. 234:75–81.

    PubMed  CAS  Google Scholar 

  • Capitanio, N., De Nitto, E., Villani, G., Capitanio, G., and Papa, S., 1990, Proton-motive activity of cytochrome c oxidase: Control of oxidoreduction of the heme centers by the proton-motive force in the reconstituted beef heart enzyme, Biochemistry 29:2939–2945.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Capitanio, G., De Nitto, E., Villani, G., and Papa, S., 1991, H+/e- stoichiometry of mitochondrial cytochrome complexes reconstituted in liposomes, FEBS Lett. 288:179–182.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Peccarisi, R., Capitanio, G., Villani, G., De Nitto, E., Scacco, S., and Papa, S., 1994, Role of nuclear-encoded subunits of mitochondrial cytochrome c oxidase in proton pumping revealed by limited enzymatic proteolysis, Biochemistry 33(41):12521–12526.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Capitanio, G., Demarinis, D. A., De Nitto, E., Massari, S., and Papa, S., 1996, Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: Influence of the rate of electron flow and transmembrane delta pH, Biochemistry 35:10800–10806.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Vygodina, T. V., Capitanio, G., Konstantinov, A. A., Nicholls, P., and Papa, S., 1997a, Redox-linked protolytic reactions in soluble cytochrome c oxidase from beef heart mitochondria, Biochim. Biophys. Acta 1318:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio, N., Capitanio, G., De Nitto, E., and Papa, S., 1997b, Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase, FEBS Lett. 414:414–418.

    Article  PubMed  CAS  Google Scholar 

  • Clark, W. M., 1960, Oxidation-Reduction Potentials of Organic Systems, Waverley Press, Baltimore, MD.

    Google Scholar 

  • Cocco, T., Lorusso, M., Di Paola, M., Minuto, M., and Papa, S., 1992, Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc 1 complex. Influence of the proton-motive force on the H+/e- stoichiometry, Eur. J. Biochem. 209:475–481.

    Article  PubMed  CAS  Google Scholar 

  • Cocco, T., Di Paola, M., Minuto, M., Carlino, V., Papa, S., and Lorusso, M., 1997, Steady-state proton translocation in bovine heart mitochondrial bc 1 complex reconstituted into liposomes, J. Bioenerg. Biomembr. 29:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Collinson, I. R., van Raaij, M. J., Runswick, M. J., Fearnley, I. M., Skehel, J. M., Orriss, G. L., Miroux, B., and Walker, J. E., 1994, ATP synthase from bovine heart mitochondria. In vitro assembly of a stalk complex in the presence of FI-ATPase and in its absence, J. Mol. Biol. 242:408–421.

    PubMed  CAS  Google Scholar 

  • Deisenhofer, J., and Michel, H., 1989, The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis, Science 245:1463–1471.

    Article  PubMed  CAS  Google Scholar 

  • De Paula, J. C., Peiffer, W. E., Ingle, R. T., Centeno, J. A., Ferguson-Miller, S., and Babcock, G. T., 1990, Hemes a and a 3 environments of plant cytochrome c oxidase, Biochemistry 29:8702–8706.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H., Moser, C. C., Robertson, D. E., Tokito, M. K., Daldal, F., and Dutton, P. L., 1995, Ubiquinone pair in the Q0 site central to the primary energy conversion reactions of cytochrome bc 1 complex, Biochemistry 34:15979–15996.

    Article  PubMed  CAS  Google Scholar 

  • Fann, Y. C., Ahmed, I., Blackburn, N. J., Boswell, J. S., Verkhovskaya, M. L., Hoffman, B. M., and Wikström, M., 1995, Structure of CuB in the binuclear heme-copper center of the cytochrome aa 3-type quinol oxidase from Bacillus subtilis: An ENDOR and EXAFS study, Biochemistry 34:10245–10255.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Miller, S., 1993, Cytochrome oxidase, J. Bioenerg. Biomembr. 25:167–188.

    Article  Google Scholar 

  • Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., Garcia-Horsman, A., Schmidt, E., Hosler, J., Babcock, G. T., Gennis, R. B., and Fergusson-Miller, S., 1996, Possible proton relay pathways in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA 92:1604–1608.

    Article  Google Scholar 

  • Fitton, V., Rigoulet, M., Ouhabi, R., and Guerin, B., 1994, Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation, Biochemistry 33:9692–9698.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, L. D., 1976, Oxygen consumption of mammalian tissues, in: Biological Handbook, Cell Biology, vol. 1, (P. L. Altman, and D. Dimmer Katz, eds.), pp. 72–89, Federation of American Societies for Experimental Biology, Bethesda, MD.

    Google Scholar 

  • Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R., 1994, The superfamily of heme-copper respiratory oxidases, J. Bacteriol. 176:5587–5600.

    PubMed  CAS  Google Scholar 

  • Hallen, S., and Nilsson, T., 1992, Proton transfer during the reaction between fully reduced cytochrome c oxidase and dioxygen: pH and deuterium isotope effects, Biochemistry 31:11853–11859.

    Article  PubMed  CAS  Google Scholar 

  • Hallen, S., Brzezinski, P., and Malmström, B. G., 1994, Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site, Biochemistry 33:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  • Haltia, T., Saraste, M., and Wikström, M., 1991, Subunit III of cytochrome c oxidase is not involved in proton translocation: A site-directed mutagenesis study, EMBO J. 10(8):2015–2021.

    PubMed  CAS  Google Scholar 

  • Harris, D. A., and Das, A. M., 1991, Control of mitochondrial ATP synthesis on the heart, Biochem. J. 280:561–573.

    PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E., and Downing, K. H., 1990, Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicro-scopy, J. Mol. Biol. 213:899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hill, B. C., 1994, Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen, J. Biol. Chem. 269:2419–2425.

    PubMed  CAS  Google Scholar 

  • Hofacker, I., and Schulten, K., 1998, Oxygen and proton pathways in cytochrome c oxidase, Proteins 30:100–107.

    Article  PubMed  CAS  Google Scholar 

  • Hofhaus, G., Weiss, H., and Leonard, K., 1991, Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I), J. Mol. Biol. 221:1027–1043.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwing, B., and Michel, H., 1995, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature 376:660–669.

    Article  PubMed  CAS  Google Scholar 

  • Kadenbach, B., Jaraush, S., Hartmass, R., and Merle, P., 1983, Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure, Anal. Biochem. 129:517–521.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, F. G., and Jones, D. P., 1986, Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes, Am J. Physiol. 250:C374–C383.

    PubMed  CAS  Google Scholar 

  • Khorana, H. G., 1988, Bacteriorhodopsin, a membrane protein that uses light to translocate protons, J. Biol. Chem. 263:7439–7442.

    PubMed  CAS  Google Scholar 

  • Kilmartin, J. V., and Rossi-Bernardi, L., 1973, Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates, Physiol. Rev. 53:836–888.

    PubMed  CAS  Google Scholar 

  • Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B., 1997, The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations in time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA 94:9085–9090.

    Article  PubMed  CAS  Google Scholar 

  • Link, T. A., Hagen, W. R., Pierik, A. J., Assmann, C., and von Jagow, G., 1992, Determination of the redox properties of the Rieske [2Fe-2S] cluster of bovine heart bc 1 complex by direct electrochemistry of a water-soluble fragment, Eur. J. Biochem. 208:685–691.

    Article  PubMed  CAS  Google Scholar 

  • Lorusso, M., Cocco, T., Minuto, M., Capitanio, N., and Papa, S., 1995, Proton/electron stoichiome-try of mitochondrial bc 1 complex. Influence of pH and transmembrane delta pH, J. Bioenerg. Biomembr. 27:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Luvisetto, S., Conti, E., Buso, M., and Azzone, G. F., 1991, Flux ratios and pump stoichiometrics at sites II and III in liver mitochondria. Effect of slips and leaks, J. Biol. Chem. 266:1034–1042.

    PubMed  CAS  Google Scholar 

  • Macnab, R. M., 1992, Genetics and biogenesis of bacterial flagella, Annu. Rev. Genet. 26:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Malmström, B. G., 1989, The mechanism of proton translocation in respiration and photosynthesis, FEBS Lett. 250:9–21.

    Article  PubMed  Google Scholar 

  • Markossian, K. A., Poghossian, A. A., Paitian, N. A., and Nalbandyan, R. M., 1978, Superoxide dismutase activity of cytochrome oxidase, Biochem. Biophys. Res. Commun. 81:1336–1343.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research Ldt, Bodmin, United Kingdom.

    Google Scholar 

  • Mitchell, F., 1976, Possible molecular mechanism of the proton-motive function of cytochrome systems, J. Theor. Biol. 62:327–367.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1987a, Respiratory chain systems in theory and practice, in: Advances in Membrane Biochemistry and Bioenergetics (C. K. Kim, H. Tedeshi, J. J. Diwan, and J. C. Salerno, eds.), pp. 25–52, Plenum Press, New York.

    Chapter  Google Scholar 

  • Mitchell, P., 1987b, A new redox loop formality involving metal-catalysed hydroxide-ion translocation. A hypothetical Cu loop mechanism for cytochrome oxidase, FEBS Lett. 222:235–245.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1988, Possible proton-motive osmochemistry in cytochrome oxidase, Ann. NY Acad. Sci. 550:185–198.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R., and Rich, P. R., 1994, Proton uptake by cytochrome c oxidase on reduction and on ligand binding, Biochim. Biophys. Acta 1186:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., Moyle, J., and Mitchell, R., 1979, Measurement of → H+/O in mitochondria and submitochondrial vesicles, Methods Enzymol. 55:627–640.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R., Mitchell, P., and Rich, P. R., 1992, Protonation states of the catalytic intermediates of cytochrome c oxidase, Biochim. Biophys. Acta 1101:188–191.

    PubMed  CAS  Google Scholar 

  • Murphy, M. P., 1989, Slip and leak in mitochondrial oxidative phosphorylation, Biochim. Biophys. Acta 977:123–141.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. P., and Brand, M. D., 1988, The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc 1 complex of mitochondria at high membrane potential, Eur. J. Biochem. 173:645–651.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D. G., 1974, The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution, Eur. J. Biochem. 50:305–315.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D. G., and Locke, R. M., 1992, Thermogenic mechanisms in brown fat, Physiol. Rev. 64:1–64.

    Google Scholar 

  • Nicholls, P., and Wrigglesworth, J. M., 1982, Scalar and vectorial pH effects in cytochrome aa 3: Is there a proton-motive aa 3 cycle? in: Oxidase and Related Redox Systems (T. E. King et al., eds.), pp. 1149–1160, Pergamon Press, New York.

    Google Scholar 

  • Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H., 1997, Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment, Proc. Natl. Acad. Sci. USA 94:10547–10553.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., 1976, Proton translocation reactions in the respiratory chain, Biochim. Biophys. Acta 456:39–84.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., and Capitanio, N., 1998, Redox Bohr effects (cooperative coupling) and the role of heme a in the proton pump of cytochrome c oxidase, J. Bioenerg. Biomembr.

    Google Scholar 

  • Papa, S., and Lorusso, M., 1984, The cytochrome chain of mitochondria: Electron transfer reactions and transmembrane proton translocation, in: Biomembranes (R. M. Burton and F. C. Guerra, eds.), pp. 257–290, Plenum Press, London.

    Google Scholar 

  • Papa, S., Lofrumento, N. E., Quagliarello, E., Meijer, A. J., and Tager, J. M., 1970, Coupling mechanisms in anionic substrate transport across the inner membrane of rat-liver mitochondria, J. Bioenerg, 1:287–307.

    Article  CAS  Google Scholar 

  • Papa, S., Guerrieri, F., Lorusso, M., and Simone, S., 1973, Proton translocation and energy transduction in mitochondria, Biochemie 55:703–716.

    Article  CAS  Google Scholar 

  • Papa, S., Lorusso, M., and Guerrieri, F., 1975, Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxidation of endogenous ubiquinol, Biochim. Biophys. Acta 387:425–440.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., and Maida, I., 1981, Redox Bohr effects in the cytochrome system of mitochondria and their role in oxido-reduction and proton translocation, in: Vectorial Reaction in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri et al., eds.), pp. 57–69, Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Papa, S., Lorusso, M., Boffoli, D., and Bellomo, E., 1983, Redox-linked proton translocation in the b-c 1 complex from beef-heart mitochondria reconstituted in phospholipid vesicles. General characteristics and control of electron flow by ΔμH+, Eur. J. Biochem. 137:405–412.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Guerrieri, F., and Izzo, G., 1986, Cooperative proton-transfer reactions in the respiratory chain: Redox Bohr effects, Methods Enzymol. 126:331–343.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Capitanio, N., and De Nitto, E., 1987, Characteristics of the redox-linked proton ejection in beef heart cytochrome c oxidase reconstituted in liposomes, Eur. J. Biochem. 164:507–516.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Capitanio, N., Capitanio, G., De Nitto, E., and Minuto, M., 1991, The cytochrome chain of mitochondria exhibits variable H+/e- stoichiometry, FEBS Lett. 288:183–186.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Lorusso, M., and Capitanio, N., 1994a, Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria, J Bioenerg. Biomembr. 26:609–617.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S., Capitanio, N., Glaser, P., and Villani, G., 1994b, The proton pump of heme-copper oxidases, Cell Biol. Int. 18(5):345–355.

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon, D., Zoratti, M., and Azzone, G. E, 1983, Molecular slipping in redox and ATPase H+ pumps, Biochim. Biophys. Acta 723:317–321.

    Article  PubMed  CAS  Google Scholar 

  • Proteau, G., Wrigglesworth, J. M., and Nicholls, P., 1983, Proton-motive functions of cytochrome c oxidase in reconstituted vesicles, Biochem. J. 210:199–205.

    PubMed  CAS  Google Scholar 

  • Puustinen, A., Bailey, J. A., Dyer, R. B., Mecklenburg, S. L., Wikström, M., and Woodruff, W. H., 1997, Fourier transform infrared evidence for connectivity between CuB and glutamic acid 286 in cytochrome bo 3 from Escherichia coli, Biochemistry 36:13195–13200.

    Article  PubMed  CAS  Google Scholar 

  • Rich, P. R., 1995, Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron-copper respiratory oxidases, Aust. J. Plant Physiol. 22:479–486.

    Article  CAS  Google Scholar 

  • Rich, P. R., Meunier, B., Mitchell, R., and Moody, A. J., 1996, Coupling of charge and proton movement in cytochrome c oxidase, Biochim. Biophys. Acta 1275:91–95.

    Article  Google Scholar 

  • Rousseau, D. L., Sassaroli, M., Ching, Y.-C., and Dasgupta, S., 1988, The role of water near cytochrome a in cytochrome c oxidase, Ann. NY Acad. Sci. 550:223–237.

    Article  PubMed  CAS  Google Scholar 

  • Saiki, K., Nakamura, H., Mogi, T., and Anraku, Y., 1996, Probing a role of subunit IV of the Escherichia coli bo-type ubiquinol oxidase by deletion and cross-linking analyses, J. Biol. Chem. 271(76):15336–15340.

    PubMed  CAS  Google Scholar 

  • Skulachev, V. P., 1994, Decrease of the intracellular concentration of O2 as a special function of the cellular respiratory system, Biochemistry (Moscow) 59(12): 1910–1912.

    CAS  Google Scholar 

  • Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M., 1993, Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry 32:10923–10928.

    Article  PubMed  CAS  Google Scholar 

  • Tittor, J., Soell, C., Oesterhelt, D., Butt, H.-J., and Bamberg, E., 1989, A defective proton pump, point-mutated bacteriorhodopsin asp96→asn is fully reactivated by azide, EMBO J. 8:3477–3482.

    PubMed  CAS  Google Scholar 

  • Trumpower, B. L., and Gennis, R. B., 1993, Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation, Annu. Rev. Biochem. 63:675–716.

    Article  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashila, E., Tomizaki, T., Yamagushi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1995, Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å, Science 269:1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara, T., Aoyama, T., Yamashila, E., Tomizaki, T., Yamagushi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S., 1996, The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science 272:1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Urban, P. F., and Klingenberg, M., 1969, On the redox potentials of ubiquinone and cytochrome b in the respiratory chain, Eur. J. Biochem. 9:519.

    Article  PubMed  CAS  Google Scholar 

  • Verkhovskaya, M. L., Garcia-Horsman, A., Puustinen, A., Rigaud, J. L., Morgan, J. E., Verkovsky, M. I., and Wikström, M., 1997, Glutamic acid 286 in subunit I of cytochrome bo 3 is involved in proton translocation, Proc. Natl. Acad. Sci. USA 94:10128–10131.

    Article  PubMed  CAS  Google Scholar 

  • Villani, G., 1995, Analisi mutazionale e biochimica della fosforilazione ossidativa in procarioti ed elicanoti e sviluppo di approcci diagnostici e terapeutici per le malattie mitocondriali, Ph.D. Thesis, Bari, Italy.

    Google Scholar 

  • Villani, G., and Attardi, G., 1997, In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells, Proc. Natl. Acad. Sci. USA 94: 1166–1171.

    Article  PubMed  CAS  Google Scholar 

  • Villani, G., Tattoli, M., Capitanio, N., Glaser, P., Papa, S., and Danchin, A., 1995, Functional analysis of subunits III and IV of Bacillus subtilis aa 3-600 quinol oxidase by in vitro mutagenesis and gene replacement, Biochim. Biophys. Acta 1232(l-2):67–74.

    PubMed  Google Scholar 

  • von Jagow, G., and Sebald, W., 1980, b-Type cytochromes, Annu. Rev. Biochem. 49:281–314.

    Article  Google Scholar 

  • Vygodina, T. V., Pecoraro, C., Mitchell, D., Gennis, R., and Konstantinov, A. A., 1998, Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase, Biochemistry 37:3053–3061.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J. E., 1992, The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains, Q. Rev. Biophys. 25:253–324.

    Article  PubMed  CAS  Google Scholar 

  • Watmough, N. J., Katsonouri, A., Little, R. H., Osborne, J. P., Furlong-Nickels, E. F., Gennis, R., Brittain, T., and Greenwood, C., 1997, A conserved glutamic acid in helix VI of cytochrome bo 3 influences a key step in oxygen reduction. Biochemistry 36:13736–13742.

    Article  PubMed  CAS  Google Scholar 

  • Wikström, M., 1977, Proton pump coupled to cytochrome c oxidase in mitochondria, Nature 266:271–273.

    Article  PubMed  Google Scholar 

  • Wikström, M., 1989, Identification of of the electron transfers in cytochrome oxidase that are coupled to proton-pumping, Nature 338:776–778.

    Article  PubMed  Google Scholar 

  • Wikström, M., and Krab, K., 1979, Proton-pumping cytochrome c oxidase, Biochim. Biophys. Acta 549:177–222.

    Article  PubMed  Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M., 1981, Proton translocating cytochrome complexes, Annu. Rev. Biochem. 50:623–655.

    Article  PubMed  Google Scholar 

  • Wikström, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M., and Verkhovsky, M. I., 1994, Mechanism of proton translocation by the respiratory oxidases. The histidine cycle, Biochim. Biophys. Acta 1187:106–111.

    Article  PubMed  Google Scholar 

  • Wilson, D. F., Lindsay, J. G., and Brocklehurst, E. S., 1972, Heme-heme interaction in cytochrome oxidase, Biochim. Biophys. Acta 256:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff, W H., 1993, Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation, J. Bioenerg. Biomem. 25:177–188.

    Article  CAS  Google Scholar 

  • Woodruff, W. H., Einarsdottir, O., Dyer, R. B., Bagley, K. A., Palmer, G., Atherton, S. J., Goldbeck, R. A., Dawes, T. O., and Kliger, D. S., 1991, Nature and functional implications of the cytochrome a 3 transients after photodissociation of CO-cytochrome oxidase, Proc. Natl. Acad. Sci. USA 88:2588–2592.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, J., 1968, Regulation in macromolecules as illustrated by haemoglobin, Q. Rev. Biophys. 1:35–80.

    Article  PubMed  CAS  Google Scholar 

  • Xia, D., Yu, C. A., Kim, H., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J., 1997, Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria, Science 277:60–62.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, S., 1997, The crystal structure of bovine heart cytochrome c oxidase, functional implications, FASEB J. 11(9):A858,6.

    Google Scholar 

  • Yu, C. A., Xia, J.-Z., Kachurin, A. M., Yu, L., Xia, D., Kim, H., and Deisenhofer, J., 1996, Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc 1 complex, Biochim. Biophys. Acta 1275:47–53.

    Article  PubMed  Google Scholar 

  • Zaslavsky, D., and Gennis, R., 1998, Substitution of lysine-362 in a putative proton conduction channel in the cytochrome c oxidase from Rhodobacter sphaeroides blocks turnover with O2 but not with H2O2, Biochemistry 37:3062–3067.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papa, S., Capitanio, N., Villani, G. (1999). Proton Pumps of Respiratory Chain Enzymes. In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics