Skip to main content

Strategy toward Gene Therapy of Mitochondrial DNA Disorders

  • Chapter
Frontiers of Cellular Bioenergetics

Abstract

The major function of mitochondria is to generate energy. Mitochondria fulfill this main task by synthesizing ATP from the energy released during the oxidation of substrates and cofactors, a process known as oxidative phosphorylation. Essential for this process is the respiratory chain, a four-enzyme system composed of multiprotein complexes located at the inner mitochondrial membrane. The complexes are responsible for the redox processes that are accompanied by electron transfer and proton pumping activities leading to a membrane potential across the inner mitochondrial membrane. The entire oxidative phosphorylation system is completed by a fifth complex, the ATP synthase, which converts the membrane potential into ATP by condensing ADP and phosphate. The genes required for this energy-generating system are distributed throughout two genomes—the nuclear and the mitochondrial genome. While mitochondria contain the only source of endogenous extrachromosomal DNA, its genes contain the information for only 13 polypeptides of the oxidative phosphorylation system (OXPHOS) system as well as a set of 2 rRNAs and 22 tRNAs essential for their expression. The human mtDNA has evolved to show remarkable economy of organization, containing only a short section of noncoding DNA that is known as the D-loop. However, this region does contain sequences important for replication and transcription of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G., 1981, Sequence and organization of the human mitochondrial genome, Nature 290: 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Bordonne, R., Bandlow, W., Dirheimer, G., and Martin, R. P., 1987, A single base change in the extra-arm of yeast mitochondrial tyrosine tRNA affects its conformational stability and impairs aminoacylation, Mol. Gen. Genet. 206:498–504.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D. D., and Clayton, D. A., 1987, A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA, Science 235:1178–1184.

    Article  PubMed  CAS  Google Scholar 

  • Chang, D. D., and Clayton, D. A., 1989, Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate, Cell 56:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowska-Lightowlers, Z. M., Lightowlers, R. N., and Turnbull, D. M., 1995, Gene therapy for mitochondrial DNA defects: Is it possible?, Gene Then 2:311–316.

    CAS  Google Scholar 

  • Clayton, D. A., 1991, Nuclear gadgets in mitochondrial DNA replication and transcription, Trends Biochem. Sci. 16:107–111.

    Article  PubMed  CAS  Google Scholar 

  • Enriquez, J. A., Chomyn, A., and Attardi, G., 1995, MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination, Nat. Genet. 10:47–55.

    Article  PubMed  CAS  Google Scholar 

  • Glick, B., and Schatz, G., 1991, Import of proteins into mitochondria, Annu. Rev. Genet. 25:21–44.

    Article  PubMed  CAS  Google Scholar 

  • Glick, B. S., Beasley, E. M., and Schatz, G., 1992, Protein sorting in mitochondria, Trends Biochem. Sci. 17:453–459.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, C. L., Donlon, T. A., Darras, B. T., Chang, D. D., Topper, J. N., Clayton, D. A., and Francke, U., 1990, The gene for the RNA component of the mitochondrial RNA-processing endo-ribonuclease is located on human chromosome 9p and on mouse chromosome 4, Genomics 6:540–544.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, H. T., 1995, Allotropic expression of mitochondrial genes in the nucleus: Towards a gene therapy strategy for mitochondrial diseases, EUROMIT III, Abstractbook, p. 9.

    Google Scholar 

  • Li, K., Smagula, C. S., Parsons, W. J., Richardson, J. A., Gonzalez, M., Hagler, H. K., and Williams, R. S., 1994, Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis, J. Cell Biol. 124:871–882.

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra, S., Ghosh, T., and Adhya, S., 1994, Import of small RNAs into leishmania mitochondria in vitro, Nucleic Acids Res. 22:3381–3386.

    Article  PubMed  CAS  Google Scholar 

  • Moraes, C. T., Ricci, E., Petruzzella, V., Shanske, S., DiMauro, S., Schon, E. A., and Bonilla, E., 1992, Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions, Nat. Genet. 1:359–367.

    Article  PubMed  CAS  Google Scholar 

  • Munnich, A., Rustin, P., Rotig, A., Chretien, D., Bonnefont, J. P., Nuttin, C., Cormier, V., Vassault, A., Parvy, P., and Bardet, J., 1992, Clinical aspects of mitochondrial disorders, J. Inherit. Metab. Dis. 15:448–455.

    Article  PubMed  CAS  Google Scholar 

  • Nagley, P., Farrell, L. B., Gearing, D. P., Nero, D., Meltzer, S., and Devenish, R. J., 1988, Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cyto-plasmically synthesized subunit 8, a polypeptide normally encoded within the organelle, Proc. Natl. Acad. Sci. USA 85:2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W., Haiti, F. U., Craig, E. A., and Pfanner, N., 1990, How do polypeptides cross the mitochondrial membranes? Cell 63:447–450.

    Article  PubMed  CAS  Google Scholar 

  • Pak, Y. K., and Weiner, H., 1990, Import of chemically synthesized signal peptides into rat liver mitochondria, J. Biol. Chem. 265:14298–14307.

    PubMed  CAS  Google Scholar 

  • Pfanner, N., and Neupert, W., 1990, The mitochondrial protein import apparatus, Annu. Rev. Biochem. 59:331–353.

    Article  PubMed  CAS  Google Scholar 

  • Pfanner, N., Söllner, T., and Neupert, W., 1991, Mitochondrial import receptors for precursor proteins, Trends Biochem. Sci. 16:63–67.

    Article  PubMed  Google Scholar 

  • Schmitt, M. E., and Clayton, D. A., 1993, Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae, Mol. Cell Biol. 13:7935–7941.

    CAS  Google Scholar 

  • Schon, E. A., and King, M. P., 1995, Physical communication between mammalian mitochondria: A genetic approach, EUROMIT III, Abstractbook, p. 7.

    Google Scholar 

  • Seibel, P., and Seibel, A., 1994, Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen, German Patent P 44 21 079.

    Google Scholar 

  • Seibel, P., and Seibel, A., 1995a, Replikatives und transkriptionsaktives Peptid-Nukleinsäureplasmid, sowie sein Verwendung zur Einbringung in Zellen und Zellorganellen, German Patent P 195 208 15.

    Google Scholar 

  • Seibel, P., and Seibel, A., 1995b, Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung, sowie seine Verwendung zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen, International Patent PCT DE 95/00775.

    Google Scholar 

  • Seibel, P., Degoul, F., Bonne, G., Romero, N., Francois, D., Paturneau Jouas, M., Ziegler, F., Eymard, B., Fardeau, M., Marsac, C., and Kadenbach, B., 1991, Genetic biochemical and pathophysiological characterization of a familial mitochondrial encephalomyopathy (MERRF), J. Neurol. Sci. 105:217–224.

    Article  PubMed  CAS  Google Scholar 

  • Seibel, P., Trappe, J., Villani, G., Klopstock, T., Papa, S., and Reichmann, H., 1995, Transfection of mitochondria: Strategy towards a gene therapy of mitochondrial DNA diseases, Nucleic Acids Res. 23:10–17.

    Article  PubMed  CAS  Google Scholar 

  • Small, I., Marechal Drouard, L., Masson, J., Pelletier, G., Cosset, A., Weil, J.H., and Dietrich, A., 1992, In vivo import of a normal or mutagenized heterologous transfer RNA into the mitochondria of transgenic plants: Towards novel ways of influencing mitochondrial gene expression? EMBO J. 11:1291–1296.

    PubMed  CAS  Google Scholar 

  • Takiguchi, M., Murakami, T., Miura, S., and Mori, M., 1987, Structure of the rat ornithine carbamoyltransferase gene, a large, X chromosome-linked gene with an atypical promoter, Proc. Natl. Acad. Sci. USA 84:6136–6140.

    Article  PubMed  CAS  Google Scholar 

  • Tarassov, I., Entelis, N., and Martin, R. P., 1995a, Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases, EMBO J. 14:3461–3471.

    PubMed  CAS  Google Scholar 

  • Tarassov, I., Entelis, N., and Martin, R. P., 1995b, An intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA, J. Mol. Biol. 245:315–323.

    Article  PubMed  CAS  Google Scholar 

  • Vestweber, D., and Schatz, G., 1989, DNA-protein conjugates can enter mitochondria via the protein import pathway, Nature 338:170–172.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C., 1986, Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance, Somat. Cell Mol. Genet. 12:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C., 1992a, Diseases of the mitochondrial DNA, Annu. Rev. Biochem. 61:1175–1212.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C., 1992b, Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256:628–632.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C., 1995, 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging, Am. J. Hum. Genet. 57:201–223.

    PubMed  CAS  Google Scholar 

  • Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M., Elsas, L. J., and Nikoskelainen, E. K., 1988, Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy, Science 242:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O., and Attardi, G., 1992, Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encepha-lomyopathy, Proc. Natl. Acad. Sci. USA 89:11164–11168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seibel, P., Schliebs, M., Flierl, A. (1999). Strategy toward Gene Therapy of Mitochondrial DNA Disorders. In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics