Skip to main content

Whorl Width in the Body Chamber of Ammonites as a Sign of Dimorphism

  • Chapter
Advancing Research on Living and Fossil Cephalopods

Abstract

The clearest indication of dimorphism in ammonites is considered to be the shell diameter between forms which have identical inner whorls but which reached maturity at different sizes. Callomon coined the apt terms macroconch (M) and microconch (m) for the large and small forms, respectively. The character of the more or less inflated and broadened whorls of the body chamber, clearly represented in the width:diameter ratio W:D, is another very important manifestation of dimorphism, always present, in my opinion. This character has been used to separate “male” (LARGIVENTER conch = L) from “female” (LEVIVENTER conch = 1), and in some Mesozoic ammonites presents a clear bimodal distribution. The present paper gives some examples of dimorphism from the literature and personal studies on faunas from the Trento Plateau (Northern Italy), demonstrating the great importance of the W:D ratio with which dimorphic pairs can be recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre-Urreta, M.B., and Rawson, P.R, 1993, The lower Cretaceous Ammonite Paraspiticeras from the Neuquen Basin, West-Central Argentina, N. Jb. Palaeont. Abh, 188:51–69.

    Google Scholar 

  • Callomon, J.H., 1955, The ammonite succession in the Lower Oxford Clay and Kellaways Beds at Kidlington, Oxfordshire, and the zones of the Callovian Stage, Phyl. Trans. R. Soc, B 239:215–264.

    Article  Google Scholar 

  • Callomon, J.H., 1981, Dimorphism in Ammonoids, in: The Ammonoidea, Systematic Association Spec Vol. 18 (M.R.House, and J.R.Senior, eds.), Academic Press,London, pp.257–273.

    Google Scholar 

  • Callomon, J.H., 1985, The evolution of the Jurassic Ammonite family Cardioceratidae; Spec. Pap. Palaeont, 33:49–90.

    Google Scholar 

  • Callomon, J.H., and Wright, J.K., 1989, Cardioceratid and Kosmoceratid Ammonites from the Callovian of Yorkshire, Palaeontology 32/4:799–836.

    Google Scholar 

  • Checa, A., 1984, Phylogenetic relations among Oxfordian and Kimmeridgian Aspidoceratinae “classical species”, deduced from the Subbetic record (South Spain), Geobios 17/1:21–31.

    Article  Google Scholar 

  • Checa, A., 1985, Los Aspidoceratiformes en Europa (Ammonitina, Farn. Aspidoceratidae: Subfamilias Aspidoceratinae y Physodoceratinae, Tesis Doctoral Univ. Granada, Imp. Sec. de public. Hosp. Real Granada: 1–412.

    Google Scholar 

  • Cobban, W.A., and Hook, S.C., 1980, The Upper Cretaceous (Turonian) Ammonite Family Coilopoceratidae Hyatt in the Western Interior of the United States, Geol. Surv. Prof. Pap .1192:1–28.

    Google Scholar 

  • Cobban, W.A., and Kennedy, W.J., 1993, The Upper Cretaceous dimorphic Pachydiscid Ammonite Menuites in the Western Interior of the United States, U.S. Geol. Surv. Prof. Pap, 1553:1–14.

    Google Scholar 

  • Cope, J.C.W., 1992, Dimorphism in a Tethyan early Jurassic Juraphyllites, Lethaia 25:439–441.

    Article  Google Scholar 

  • Crick, R.E., 1978, Morphological variations in the Ammonite Scaphites of the Blue Hill Member, Carlile Shale, upper Cretaceous, Kansas Paleont.Contr.Univ.Kansas, Univ. Kansas Palaeont. Contrib, 88: 1–28.

    Google Scholar 

  • Dagys, A.S., and Weitschat, W, 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia; Lethaia 26:113–121.

    Article  Google Scholar 

  • Dommergues, J.L., 1994, The Jurassic ammonite Coeloceras:an atypical example of dimorphic progenesis elucidated by cladistics, Lethaia 27: 143–152.

    Article  Google Scholar 

  • Enay, R., and Cecca, F., 1986, Structure et évolution des populations tithoniques du genre d’ammonites téthysien Haploceras Zittel, 1868, in: Atti del primo convegno internazionale, Fossili Evoluzione e Ambiente, Pergola 1984 (Comitato Centenario Raffaele Piccinini Ed.), Stamp.Belli, Pesaro, pp.37–53.

    Google Scholar 

  • Guex, J., 1981, Quelques cas de dimorphisme chez les ammonoides du Lias inférieur, Bull. Lab.Géol.Min.Géoph. Mus. Géol. Univ. Lausanne, 258: 239–248.

    Google Scholar 

  • Gygi, R.A., and Marchand, D., 1982, Les Faunes de Cardioceratinae (Ammonoidea) du Callovien terminal et de l’Oxfordien inférieur et moyen (Jurassique) de la Suisse septentrionale: stratigraphie,paléoécologie, tax-onomie préliminaire, Geobios 15/4:517–571.

    Article  Google Scholar 

  • Hantzpergue, P., 1989, Les Ammonites Kimméridgiennes du Haut-Fond d’Europe occidentale, Cahier Paléont., 1–428.

    Google Scholar 

  • Hantzpergue, P., Atrops, F., and Enay, R., 1997, Kimméridgien, in: Biostratigraphie du Jurassique Ouest-Européen et Méditerranéen (E. Cariou and P. Hantzpergue, eds.); Bull. Centre Rech. Elf Explor. Prod, 17: 87–96.

    Google Scholar 

  • Haug, M.E., 1910, Note sur le péristome du Phylloceras mediterraneum; Bull. Soc. Gèol. De France, 3Ser. 18: 328–334.

    Google Scholar 

  • Haven, N., 1977, The reproductive biology of Nautilus pompilus in the Philippines, Mar. Biol, 42:177–184.

    Article  Google Scholar 

  • Howart, M.K., and Donovan, D.T., 1964, Ammonites of the Liassic family Juraphyllitidae in Britain, Palaeontology 7/2: 286–305.

    Google Scholar 

  • Jacobs, D.K., and Landman, N.H., 1993, Nautilus, a poor model for the function and behavior of Ammonoids?, Lethaia 26:101–111.

    Article  Google Scholar 

  • Joly, B., 1976, Les Phylloceratidae malgaches au Jurassique. Generalités sur les Phylloceratidae et quelques Juraphyllitidae, Doc.lab.Geol.Fac.Sc.Lyon 67: 1–471.

    Google Scholar 

  • Joly, B., 1993, Les Phyllocerataceae malgaches au Crétacé (Phylloceratina, Ammonoidea), Doc. lab. Geol. Fac. Sc.Lyon 127:5–171.

    Google Scholar 

  • Kennedy, W.J., and Cobban, W.A., 1976, Aspect of Ammonite biology, Biogeography, and Biostratigraphy, Spec. Pap. Palaeont, 17: 1–94.

    Google Scholar 

  • Kennedy, W.J., and Hancock, J.M., 1970, Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France, Palaeontology 13/3:462–490.

    Google Scholar 

  • Lehmann, U., 1981, The Ammonites, their life and their world, Cambridge University Press, 246 pp.

    Google Scholar 

  • Makowsky, H., 1962, Problem of Sexual Dimorphism in Ammonites, Palaeont. Polon, 12:1–92.

    Google Scholar 

  • Mangold-Wirz, K., 1963, Biologie des céphalopodes bénthiques et néktoniques de la mer Catalane, Vie et millieu Suppl. 12:1–283.

    Google Scholar 

  • Meléndez G. 1989 El Oxfordense en el sector central de la Cordillera Ibérica (Provincias de Zaragoza y Teruel) Inst.Est.Turol.:1–418

    Google Scholar 

  • Neige, P., Marchand, D., and Laurin, B., 1997, Heterochronic differentiation of sexual dimorphism among Jurassic ammonite species, Lethaia 30: 145–155.

    Article  Google Scholar 

  • Palframan, D.F.B., 1969, Taxonomy of sexual Dimorphism in Ammonites: Morphogenetic Evidence in Hectico-ceras brightii (Pratt), in: Sexual Dimorphism in Fossil Metazoa and Taxonomic Implications (G.E.G. Westermann, ed.), Schweizerbart’sche Verlagsbuch. Stuttgart, pp. 126–152.

    Google Scholar 

  • Reeside, J.B., and Cobban, W.A., 1960, Studies of the Mowry Shale (Cretaceous) and Contemporary Formations in the United States and Canada, Geol. Surv. Prof. Pap, 355:1–126.

    Google Scholar 

  • Reyment, R.A., 1988, Does sexual dimorphism occur in Upper Cretaceous ammonites ?, Senckenberg. Leth, 69/1-2:109–119.

    Google Scholar 

  • Sarti, C, 1990, Dimorfismo nella specie Sowerbyceras loryi (Mun.Chlm.) del Kimmeridgiano, in: Atti del secondo convegno internazionale. Fossili Evoluzione e Ambiente, Pergola 1987 (G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tecnostampa, Roma, pp. 427–439.

    Google Scholar 

  • Sarti, C, 1993, II Kimmeridgiano delle Prealpi Veneto-Trentine: Fauna e Biostratigrafia, Mem. Mus. Civ. St. Nat. Verona II, 5: 9–205.

    Google Scholar 

  • Sarti, C, in preparation, Evolution and dimorphism of the ammonite genus Sowerbyceras in the Kimmeridgian.

    Google Scholar 

  • Saunders, B.W., and Spinosa, C, 1978, Sexual dimorphism in Nautilus from Palau, Paleobiol 4/3: 349–358.

    Google Scholar 

  • Silberling, N.J., 1959, Pre-Tertiary Stratigraphy and upper Triassic Palaeontology of the Union District Shoshone Mountains Nevada, Geol Surv. Prof. Pap. 322:1–67.

    Google Scholar 

  • Stenzel, H.B., 1952, Living Nautilus, in: Treatise oflnv. Paleont., Nautiloidea (R.C. Moore, ed.) H: pp. 2–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarti, C. (1999). Whorl Width in the Body Chamber of Ammonites as a Sign of Dimorphism. In: Olóriz, F., Rodríguez-Tovar, F.J. (eds) Advancing Research on Living and Fossil Cephalopods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4837-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4837-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7193-9

  • Online ISBN: 978-1-4615-4837-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics