Skip to main content

Computational Mechanisms Underlying the Second-Order Structure of Cortical Complex Cells

  • Chapter
Book cover Computational Neuroscience

Abstract

We investigate what computational mechanisms give rise to the nonlinearity of the complex cell receptive field in the primary visual cortex. Complex cells are characterized by their nonlinear spatial properties such as spatial phase invariance and nonlinear response to multiple bar presentations. We carry out network simulations to estimate the second-order Wiener-like kernels for several different models. Models with nonlinear spatial pooling of simple-cell-like linear subunits reproduce the second-order kernels in good agreement with physiologically estimated kernels, while models without the pooling mechanism fail to reproduce the kernel. The structure of the kernels is independent of specific nonlinear transfer functions such as half-wave rectification and squaring. The results support the cascade mechanism consisting of simple cells’ local feature extraction followed by nonlinear spatial pooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Emerson, M. C. Citron, W. J. Vaughn, and S. A. Klein, J. Neurophysiology, 58, 33–65, (1987)

    CAS  Google Scholar 

  2. R. G. Szulborski and L. A. Palmer, Vision Research, 30, 249–254, (1990)

    Article  PubMed  CAS  Google Scholar 

  3. J. R. Bergen and E. H. Adelson, Nature, 333, 363–364, (1988)

    Article  PubMed  CAS  Google Scholar 

  4. K. Sakai and L. H. Finkel, J. Optical Society of America, A, 12(6), 1208–1224, (1995)

    Article  CAS  Google Scholar 

  5. B. W. Mell, D. L. Rudermen, and K. A. Archie, Advances in Neural Information Processing Systems 9, (Ed.) M. C. Mozer, et. al., 83–89, MIT Press, Cambridge, MA (1997)

    Google Scholar 

  6. R. C. Emerson, M. J. Korenberg, and M. C. Citron, Biological Cybernetics, 66, 291–300, (1992)

    Article  PubMed  CAS  Google Scholar 

  7. J.-M. Alonso and L. Martinez, Abstracts for Annual Meeting, Society for Neuroscience, 1668, (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakai, K., Tanaka, S. (1998). Computational Mechanisms Underlying the Second-Order Structure of Cortical Complex Cells. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics