Skip to main content

Binocular Disparity Tuning in Cortical ‘Complex’ Cells: Yet Another Role for Intradendritic Computation?

  • Chapter
Computational Neuroscience

Abstract

Studies of information flow in the individual neuron have generally been based on the idea that the depolarization due to an activated excitatory synapse is passively propagated through the dendrite to the soma (Rall 1964). Recent evidence, however, demonstrates that the dendrites of cortical pyramidal cells contain significant concentrations of voltage-dependent channels (Stuart and Sakmann 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. and Bergen, J., 1985, Spatiotemporal energy models for the perception of motion, J. Opt. Soc. Amer., A 2, 284–299.

    Article  CAS  Google Scholar 

  • Hines M., 1989, A program for simulation of nerve equations with branching geometries, Int. J. Biomed. Comput, 24, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. and Wiesel, T., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol, 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Mel, B., 1992a, The clusteron: Toward a simple abstraction for a complex neuron, in: “Advances in Neural Information Processing Systems, vol. 4,” J. Moody, S. Hanson, and R. Lippmann, eds., Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Mel, B., 1992b, NMDA-based pattern discrimination in a modeled cortical neuron, Neural Computation, 4, 502–516.

    Article  Google Scholar 

  • Mel, B., 1993, Synaptic integration in an excitable dendritic tree, J. Neurophysiol, 70:3, 1086–1101.

    PubMed  CAS  Google Scholar 

  • Mel, B., Ruderman, D., and Archie, K., 1997, Complex-cell responses derived from center-surround inputs: the surprising power of intradendritic computation, in: “Advances in Neural Information Processing Systems, vol. 9,” MIT Press, Cambridge, MA.

    Google Scholar 

  • Movshon, J., Thompson, I., and Tolhurst, D., 1978, Receptive field organization of complex cells in the cat’s striate cortex, J. Physiol., 283, 79–99.

    PubMed  CAS  Google Scholar 

  • Nishihara, H, and Poggio, T., 1984, Stereo vision for robotics, in: “Proceedings of the First International Symposium of Robotics Research”, Brady and Paul, eds., MIT Press, Cambridge, MA.

    Google Scholar 

  • Ohzawa, I., DeAngelis, G., and Freeman, R., 1990, Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors, Science, 249, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa, I., DeAngelis, G., and Freeman, R., 1997, Encoding of binocular disparity by complex cells in the cat’s visual cortex, J. Neurophysiol, 77:6, 2879–2909.

    PubMed  CAS  Google Scholar 

  • Orban, G., 1984, “Neuronal Operations in the Visual Cortex,” Springer Verlag, New York.

    Book  Google Scholar 

  • Pettigrew, J., Nikara, T., and Bishop, P., 1968, Responses to moving slits by single units in cat striate cortex, Exp. Brain Res., 6, 373–390.

    PubMed  CAS  Google Scholar 

  • Pollen, D., and Ronner, S., 1983, Visual cortical neurons as localized spatial frequency filters, IEEE Trans. Sys. Man Cybern., 13, 907–916.

    Article  Google Scholar 

  • Rall, W., 1964, Theoretical significance of dendritic trees for neuronal input-output relations, in: ”Neural Theory and Modeling,” R. F. Reiss, ed., Stanford University Press, Stanford, CA.

    Google Scholar 

  • Stuart, D., and Sakmann, B., 1994, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature, 367, 69–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mel, B.W., Archie, K.A., Ruderman, D.L. (1998). Binocular Disparity Tuning in Cortical ‘Complex’ Cells: Yet Another Role for Intradendritic Computation?. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics