Skip to main content

Detailed Model of Ryanodine Receptor-Mediated Calcium Release in Purkinje Cells

  • Chapter
Computational Neuroscience
  • 40 Accesses

Abstract

Ryanodine receptor-mediated calcium release was modeled in a compartmental model of the Purkinje cell with a detailed representation of buffered calcium diffusion. For several important parameters no constraining experimental data were available. The importance of the threshold of activation of release and of the unbinding rate of the main calcium buffer in the stores (calsequestrin) is described. Using reasonable assumptions for these parameters, calcium influx during voltage-gated calcium spikes can activate ryanodine receptors in the submembrane region without noticeably changing the firing pattern of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Martone, Y. Zhang, V.M. Simpliciano, B.O. Carragher, and M.H. Ellisman, Three-dimensional visualization of the smooth endoplasmatic reticulum in Purkinje cell dendrites, J. Neurosci 13: 4636 (1993).

    PubMed  CAS  Google Scholar 

  2. I. Llano, J. Dreessen, M. Kano, and A. Konnerth, Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells, Neuron 7: 577 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. I. Llano, R. DiPolo, and A. Marty, Calcium-induced calcium release in cerebellar Purkinje cells, Neuron 12: 663(1994).

    Article  PubMed  CAS  Google Scholar 

  4. M. Kano, O. Garaschuk, A. Verkhratsky, and A. Konnerth, Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones, J. Physiol. 487: 1 (1995).

    PubMed  CAS  Google Scholar 

  5. E. De Schutter, and J.M. Bower, An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice., J. Neurophysiol. 71: 375 (1994).

    PubMed  Google Scholar 

  6. E. De Schutter, and P. Smolen, Calcium dynamics in large neuronal models in Methods in Neuronal Modeling: from Synapses to Networks, C. Koch, and I. Segev, eds., MIT Press, Cambridge, MA (1998).

    Google Scholar 

  7. M.L. Albritton, T. Meyer, and L. Stryer, Range of messenger action of calcium ion and inositol 1, 4, 5-triphosphate, Science 258: 1812 (1992).

    Article  Google Scholar 

  8. L. Fierro, and I. Llano, High endogenous calcium buffering in Purkinje cells from rat cerebellar slices, J. Physiol 496: 617(1996).

    PubMed  CAS  Google Scholar 

  9. H. Blumenfeld, L. Zablow, and B. Sabatini, Evaluation of cellular mechanisms for modulation of calcium transients using a mathematical model of fura-2 Ca2+ imaging in Aplysia sensory neurons, Biophys. 7 63: 1146(1992).

    Article  CAS  Google Scholar 

  10. S.L. Palay, and V. Chan-Palay. Cerebellar Cortex, Springer-Verlag, New York (1974).

    Book  Google Scholar 

  11. A. Goldbeter, G. Dupont and M.J. Berridge, Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation, Proc. Natl. Acad. Sci. USA 87: 1461 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. S. Györke, and M. Fill, Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart, Science 260: 807 (1993).

    Article  PubMed  Google Scholar 

  13. J. Sneyd, A.C. Charles, and M.J. Sanderson, A model for the propagation of intracellular calcium waves, Amer. J. Physiol. 266: C293–C302 (1994).

    PubMed  CAS  Google Scholar 

  14. T.R. Cheek, M.J. Berridge, R.B. Moreton, K.A. Stauderman, M.M. Murawsky, and M.D. Bootman, Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores, Biochem. J. 301: 879 (1994).

    PubMed  CAS  Google Scholar 

  15. F. Baba-Aissa, L. Raeymaekers, F. Wuytack, G. Callewaert, L. Dode, L. Missiaen, and R. Casteels, Purkinje neurons express the SERCA3 isoform of the organellar type Ca2+-transport ATPase, Molec. Brain Res. 41: 169(1996).

    Article  PubMed  CAS  Google Scholar 

  16. N. Ikemoto, M. Ronjat, L.G. Mészáros, and M. Koshita, Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum, Biochemistry 28: 6764 (1989).

    Article  PubMed  Google Scholar 

  17. J.R. Brorson, D. Bleakman, S.J. Gibbons, and RJ. Miller, The properties of intracellular calcium stores in cultured rat cerebellar neurons, J. Neurosci. 11: 4024 (1991).

    PubMed  CAS  Google Scholar 

  18. R.R. Llinás, and M. Sugimori, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, / Physiol. 305: 171 (1980).

    Google Scholar 

  19. Y.M. Usachev, and S.A. Thayer, All-or-none Ca2+ release from intracellular stores triggered by Ca2+ influx through voltage-gated Ca2+ channels in rat sensory neurons, J. Neurosci. 17: 7404 (1997).

    PubMed  CAS  Google Scholar 

  20. E. De Schutter, Modelling the cerebellar Purkinje cell: Experiments in computo, Prog. Brain Res. 102: 427(1994).

    Article  PubMed  Google Scholar 

  21. D. Jaeger, E. De Schutter, and J.M. Bower, The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study, J. Neurosci. 17: 91 (1997).

    PubMed  CAS  Google Scholar 

  22. D. Jaeger, and J.M. Bower, The function of background synaptic input in cerebellar Purkinje cells explored with dynamic current clamping, Abstr. Soc. Neurosci. 22: 494 (1996).

    Google Scholar 

  23. E. De Schutter, and J.M. Bower, Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs, Proc. Natl. Acad. Sci. USA 91: 4736 (1994).

    Article  PubMed  Google Scholar 

  24. J. Eilers, G.J. Augustine, and A. Konnerth, Subthreshold synaptic Ca2+ signaling in fine dendrites and spines of cerebellar Purkinje neurons, Nature 373: 155 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Schutter, E. (1998). Detailed Model of Ryanodine Receptor-Mediated Calcium Release in Purkinje Cells. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics