Skip to main content

Cortical Synchronization and Perceptual Salience

  • Chapter

Abstract

We present a striate-cortical model which proposes a direct relationship between cellular synchronization and perceptual salience. The model focuses on the role of the longrange horizontal connections between oriented simple cells in striate cortex and is able to account for current physiological and psychophysical results on contour salience. We demonstrate that horizontal connections between realistically-modeled multi-compartment pyramidal cells and interneurons can generate robust context-dependent synchronization. Closed contours induce better synchronization in the network than open contours, and closure thus increases perceptual salience, as observed psychophysically by Kovács and Julesz. This result is a general topological property of synchronization. The model supports a temporal synchronization solution to the binding problem, in that changes in synchronization are directly linked to changes in visual perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Singer and C.M. Gray, Visual feature integration and the temporal correlation hypothesis, Annu Rev Neurosci, 18: 555–86 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. I. Kovács and B. Julesz, A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation, Proc Natl Acad Sci U S A, 90: 7495–7 (1993).

    Article  PubMed  Google Scholar 

  3. S.-C. Yen and L.H. Finkel, Cortical synchronization mechanism for “pop-out” of salient image contours. In J. Bower (Ed.), Computational Neuroscience: Trends in Research 1997, Plenum, New York, 1997, pp. 553–560.

    Google Scholar 

  4. S.-C. Yen and L.H. Finkel, Extraction of perceptually salient contours by striate cortical networks, Vision Research (in press).

    Google Scholar 

  5. P. Parent and S.W, Zucker, Trace inference, curvature consistency, and curve detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 823–839 (1989).

    Article  Google Scholar 

  6. D.J. Field, A. Hayes and R.F. Hess, Contour integration by the human visual system: evidence for a local “association field”, Vision Res, 33: 173–93 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. C.M. Gray and D.A. McCormick, Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex, Science, 274: 109–13(1996).

    Article  PubMed  CAS  Google Scholar 

  8. R.D. Traub, M.A. Whittington, I.M. Stanford and J.G. Jefferys, A mechanism for generation of long-range synchronous fast oscillations in the cortex, Nature, 383: 621–4 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. X.J. Wang and G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, Journal of Neuroscience, 16: 6402–13 (1996).

    PubMed  CAS  Google Scholar 

  10. P. Bush and T. Sejnowski, Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models, Journal of Computational Neuroscience, 3: 91–110 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. R.D. Traub, J.G. Jefferys, R. Miles, M.A. Whittington and K. Toth, A branching dendritic model of a rodent CA3 pyramidal neurone, J Physiol (Lond), 481: 79–95 (1994).

    CAS  Google Scholar 

  12. R.D. Traub and R. Miles, Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell, J Comput Neurosci, 2: 291–8 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. N.H. Goddard and G. Hood, Large Scale Simulation with PGENESIS. In J.M. Bower and D. Beeman (Eds.), The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural Simulation System, Springer-Verlag, in press.

    Google Scholar 

  14. N. Kopell and G.B. Ermentrout, Symmetry and phaselocking in chains of weakly coupled oscillators, Communications on Pure and Applied Mathematics, 39: 623–660 (1986).

    Article  Google Scholar 

  15. D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biological Cybernetics, 68: 393–407 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Z.F. Kisvarday and U.T. Eysel, Functional and structural topography of horizontal inhibitory connections in cat visual cortex, European Journal of Neuroscience, 5: 1558–72 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. C.T. McDonald and A. Burkhalter, Organization of long-range inhibitory connections with rat visual cortex, Journal of Neuroscience, 13: 768–81 (1993).

    PubMed  CAS  Google Scholar 

  18. C. Morin and S. Molotchnikoff, Influences of horizontal connections on visual responses in rabbit striate cortex, European Journal of Neuroscience, 6: 1063–71 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. A. Mason, A. Nicoll and K. Stratford, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro, Journal of Neuroscience, 11: 72–84 (1991).

    PubMed  CAS  Google Scholar 

  20. A.M. Thomson, D. Girdlestone and D.C. West, Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices, Journal of Neurophysiology, 60: 1896–907 (1988).

    PubMed  CAS  Google Scholar 

  21. M.E. McCourt, J. Thalluri and G.H. Henry, Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat, Visual Neuroscience, 5: 83–98 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. M.W. Pettet and P. Verghese, Enhanced contour detection is not mediated by apparent contrast., 27th Annual Meeting of the Society for Neuroscience, Vol. 23, New Orleans, LA, USA, 1997, pp. 176.

    Google Scholar 

  23. W.H. McIlhagga and K.T. Mullen, Contour integration with colour and luminance contrast, Vision Research, 36: 1265–1279 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. T.F. Freund and G. Buzsaki, Interneurons of the hippocampus, Hippocampus, 6: 347–470(1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yen, SC., Menschik, E.D., Finkel, L.H. (1998). Cortical Synchronization and Perceptual Salience. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics