Skip to main content

Effects of Parp Inhibition on Drug and FAS-Induced Apoptosis in Leukaemic Cells

  • Chapter
Drug Resistance in Leukemia and Lymphoma III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 457))

Abstract

Poly (ADP-ribose) polymerase (PARP) is activated following binding to DNA strand breaks and is cleaved in cells undergoing apoptosis. Work predominantly in murine systems has suggested that inhibitors of PARP might potentiate the effects of chemotherapeutic agents and be used as adjuncts to cancer therapy. Therefore, we studied the role of PARP in drug-induced apoptosis in HL-60, myeloid leukaemia cells and found that pre-treatment with 3-aminobenzamide (3 AB) or 6(5H)- phenanthridinone, inhibitors of PARP, resulted in resistance to, rather than potentiation of apoptotic death induced by DNA-damaging agents, idarubicin, etoposide and fludarabine, as determined by flow cytometry, following propidium iodide staining. 3AB treated CEM/VLB100, mdr-expressing human lymphoblastic leukaemia cells were also found to be more resistant to idarubicin compared to cells treated with idarubicin alone, however, apoptosis was not reduced in parental CCRF-CEM cells under the same conditions. Similar results were obtained using agents with primary modes of action which do not involve DNA damage, vinblastine and a fas-ligating antibody (CH11). The precise role of PARP has yet to be defined but might involve effects on cell cycle progression.

We conclude that PARP activation appears to be involved in apoptosis in certain leukaemic cell lines and that these effects are independent of lineage or p-glycoprotein. Constitutive failure to activate PARP might be responsible for conferring resistance to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugimura T, Miwa M. Poly(ADP-ribose): historical perspective. Mol Cell Biochem. 1994, 138, 5–12.

    Article  PubMed  CAS  Google Scholar 

  2. Brochu G, Duchaine C, Thibeault L, Lagueux J, Shah GM, Poirier GG. Mode of action of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta. 1994, 1219(2), 342–350.

    Article  PubMed  CAS  Google Scholar 

  3. Naegeli H, Loetscher P, Althaus FR. Poly ADP-ribosylation of proteins. Processivity of a post-translational modification. J Biol Chem. 1989, 264(24), 14382–14385.

    PubMed  CAS  Google Scholar 

  4. Lindahl T, Satoh MS, Poirier GG, Klungland A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci. 1995, 20(10), 405–411.

    Article  PubMed  CAS  Google Scholar 

  5. de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J. Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem. 1994, 138(1-2), 15–24.

    Article  PubMed  Google Scholar 

  6. Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill D, Miwa M. The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. J Biol Chem. 1990, 265(35), 21907–21913.

    PubMed  CAS  Google Scholar 

  7. Buki KG, Bauer PI, Hakam A, Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem. 1995, 270(7), 3370–3377.

    Article  PubMed  CAS  Google Scholar 

  8. Simonin F, Poch O, Delarue M, de Murcia G. Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J Biol Chem. 1993, 268(12), 8529–8535.

    PubMed  CAS  Google Scholar 

  9. Shall S. The function of poly(ADP-ribosylation) in DNA breakage and rejoining. Mol Cell Biochem. 1994, 138, 71–75.

    Article  PubMed  CAS  Google Scholar 

  10. Satoh MS, Poirier GG, Lindahl T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry. 1994, 33(23), 7099–7106.

    Article  PubMed  CAS  Google Scholar 

  11. de Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 1994, 19(4), 172–176.

    Article  PubMed  Google Scholar 

  12. Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiation Res. 1985, 101(1), 4–15.

    Article  PubMed  CAS  Google Scholar 

  13. Cleaver J, Morgan W. Poly(ADP-ribose)polymerase: a perplexing participant in cellular responses to DNA breakage. Mutation Res. 1991, 257, 1–18.

    Article  PubMed  CAS  Google Scholar 

  14. Bramson J, Prévost J, Malapetsa A, Noë A, Poirier G, DesNoyers S, Alaoui-Jamali M, Panasci L. Poly(ADP-ribose) polymerase can bind melphalan damaged DNA. Cancer Res. 1993, 53, 5370–5373.

    PubMed  CAS  Google Scholar 

  15. Smulson M, Schein P, Mullins D, Sudhakar S. A putative role for nicotinamide adenine dinucleotide-promoted nuclear protein modificaton in the antitumour activity of N-methyl-N-nitrosurea. Cancer Res 1977, 37, 3006–3012.

    PubMed  CAS  Google Scholar 

  16. Creissen D, Shall S. Regulation of DNA ligase activity by poly(ADP-ribose). Nature. 1982, 296(271–272).

    Article  PubMed  CAS  Google Scholar 

  17. Purnell M, Whish W. Novel inhibitors of Poly(ADP-ribose) synthetase. Biochem J. 1980, 185, 775–777.

    PubMed  CAS  Google Scholar 

  18. Rankin P, Jacobson E, Benjamin R, Moss J, Jacobson M. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem. 1989, 264(8), 4312–4317.

    PubMed  CAS  Google Scholar 

  19. Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl) transferase. J Biol Chem. 1992, 267(3), 1569–1575.

    PubMed  CAS  Google Scholar 

  20. Sestili P, Spadoni G, Balsamini C, Scovassi I, Cattabeni F, Duranti E, Cantoni O, Higgins D, Thomson C. Structural requirements for inhibitors of poly(ADP-ribose) polymerase. J Cancer Res Clin Oncol. 1990, 116, 615–622.

    Article  PubMed  CAS  Google Scholar 

  21. Durkacz BW, Omidiji O, Gray DA, Shall S. (ADP-ribose)n participates in DNA excision repair. Nature. 1980, 283(5747), 593–596.

    Article  PubMed  CAS  Google Scholar 

  22. Ding R, Pommier Y, Kang V, Smulson M. Depletion of poly(ADP-ribose) polymerase by antisense RNA expression results in a delay in DNA strand break rejoining. J Biol Chem. 1991, 267(18), 12804–12812.

    Google Scholar 

  23. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature. 1992, 356(6367), 356–358.

    Article  PubMed  CAS  Google Scholar 

  24. Nduka N, Skidmore J, Shall S. The enhancement of cytotoxicity of N-methyl-N-nitrosurea and of γ-radiation by inhibitors of poly(ADP-ribose) polymerase. Eur J Biochem. 1980, 105, 525–530.

    Article  PubMed  CAS  Google Scholar 

  25. Brown D, Horsman M, Hirst D, Brown J. Enhancement of melphalan cytotoxicity in vivo and in vitro by inhibitors of poly (ADP-ribose) polymers. Int J Radiation Oncology. 1984, 10, 1665–1668.

    Article  CAS  Google Scholar 

  26. August E, Cooper D, Prusoff W. Inhibition of poly(adenosine diphosphate-ribose) polymerase by thymidine and thymidine analogues in L1210 cells and its relationship to the potentiation of the antitumour activity of 1,3-bis(2-chloroethyl)-1-nitrosurea but not of 3′-[3-(2-chloroethyl)-3-nitrosoureido]-3′-deoxythymidine. Cancer Res. 1991, 51, 1586–1590.

    PubMed  CAS  Google Scholar 

  27. Boulton S, Pemberton L, Porteous J, Curtin N, Griffin R, Golding B, Durkacz B. Potentiation of temozolomide-induced cytotoxicity: a comparative study of the biological effects of poly(ADP-ribose) polymerase inhibitors. Br J Cancer. 1995, 1995(72), 849–856.

    Article  Google Scholar 

  28. Sebolt-Leopold J, Scavone S. Enhancement of alkylating agent activity in vitro by PD 128763, a potent poly(ADP-ribose) synthetase inhibitor. Int J Radiation Oncology Biol Phys. 1992, 22, 619–621.

    Article  CAS  Google Scholar 

  29. Huet J, Laval F. Potentiation of cell killing by inhibitors of poly(adenosine diphosphate-ribose) synthesis in bleomycin-treated Chinese hamster ovary cells. Cancer Res. 1985, 45(3), 987–991.

    PubMed  CAS  Google Scholar 

  30. Hoshino J, Koeppel C, Westhäuser E. 3-aminobenzamide enhances dexamethasone-mediated mouse thymocyte depletion in vivo: implication for a role of poly ADP-rbosylation in the negative selection of immature thymocytes. Biochim Biophys Acta. 1994, 1201, 516–522.

    Article  PubMed  Google Scholar 

  31. Witmer M, Aboul-Ela N, Jacobson M, Stamato T. Increased sensitivity to DNA-alkylating agents in CHO mutants with decreased poly(ADP-ribose) polymerase activity. Mutation Res. 1994, 314, 249–260.

    Article  PubMed  CAS  Google Scholar 

  32. Judson I, Threadgill M. Poly(ADP-ribosylation) as target for cancer chemotherapy. Lancet. 1993, 342(8872), 632.

    Article  PubMed  CAS  Google Scholar 

  33. Griffin RJ, Curtin NJ, Newell DR, Golding BT, Durkacz BW, Calvert AH. The role of inhibitors of poly(ADP-ribose) polymerase as resistance-modifying agents in cancer therapy. Biochimie. 1995, 77(6), 408–22.

    Article  PubMed  CAS  Google Scholar 

  34. Beck WT, Mueller TJ, Tanzer LR. Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 1979, 39(6), 2070–2076.

    PubMed  CAS  Google Scholar 

  35. Kartner N, Riordan JR, Ling V. Cell surface p-glycoprotein is associated with multidrug resistance in mammalian cell lines. Science. 1983, 221, 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  36. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992, 13, 795–808.

    Article  PubMed  CAS  Google Scholar 

  37. Tanizawa A, Kubota M, Takimoto T, Akiyama Y, Seto S, Kiriyama Y, Mikawa H. Prevention of adriamycin-induced interphase death by 3-aminobenzamide and nicotinamide in a human promyelocytic leukemia cell line. Biochem Biophys Res Commun. 1987, 144(2), 1031–1036.

    Article  PubMed  CAS  Google Scholar 

  38. Farzaneh F, Feon S, Lebby R, Brill D, David J-C, Shall S. DNA repair in human promyelocytic cell line, HL-60. Nucleic Acids Res. 1987, 15(8), 3503–3513.

    Article  PubMed  CAS  Google Scholar 

  39. Kubota M, Tanizawa A, Hashimoto H, Shimizu T, Takimoto T, Kitoh T, Akiyama Y, Mikawa H. Cell type dependent activation of poly (ADP-ribose) synthesis following treatment with etoposide. Leuk Res. 1990, 14(4), 371–375.

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka Y, Yoshihara K, Tohno Y, Kojima K, Kameoka M, Kamiya T. Inhibition and down-regulation of poly(ADP-ribose) polymerase results in a marked resistance of HL-60 cells to various apoptosis-inducers. Cell Mol Biol (Noisy-Le-Grand). 1995, 41(6), 771–781.

    CAS  Google Scholar 

  41. Milam KM, Cleaver JE. Inhibitors of poly(adenosine diphosphate-ribose) synthesis: effect on other metabolic processes. Science. 1984, 223(4636), 589–591.

    Article  PubMed  CAS  Google Scholar 

  42. Weltin D, Picard V, Aupeix K, Varin M, Oth D, Marchai J, Dufour P, Bischoff P. Immunosuppressive activities of 6(5H)-phenanthridinone, a new poly(ADP-ribose)polymerase inhibitor. Int J Immunopharmacol. 1995, 17(4), 265–271.

    Article  PubMed  CAS  Google Scholar 

  43. Weltin D, Marchai J, Dufour P, Potworowski E, Oth D, Bischoff P. Effect of 6(5H)-phenanthridinone, an inhibitor of poly(ADP-ribose) polymerase, on cultured tumor cells. Oncol Res. 1994, 6(9), 399–403.

    PubMed  CAS  Google Scholar 

  44. Tanizawa A, Kubota M, Hashimoto H, Shimizu T, Takimoto T, Kitoh T, Akiyama Y, Mikawa H. VP-16-induced nucleotide pool changes and poly(ADP-ribose) synthesis: the role of VP-16 in interphase death. Exp Cell Res. 1989, 185(1), 237–246.

    Article  PubMed  CAS  Google Scholar 

  45. Martin DS, Schwartz GK. Chemotherapeutically induced DNA damage, ATP depletion, and the apoptotic biochemical cascade. Oncol Res. 1997, 9(1), 1–5.

    PubMed  CAS  Google Scholar 

  46. Wright S, Wei Q, Kinder D, Larrick J. Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumour necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease ans DNA fragmentation. J Exp Med. 1996, 183, 463–471.

    Article  PubMed  CAS  Google Scholar 

  47. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995, 9(5), 509–520.

    Article  PubMed  CAS  Google Scholar 

  48. Leist M, Single B, Kunstle G, Volbracht C, Hentze H, Nicotera P. Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem Biophys Res Commun. 1997, 233(2), 518–522.

    Article  PubMed  CAS  Google Scholar 

  49. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA. 1997, 94(14), 7303–7307.

    Article  PubMed  Google Scholar 

  50. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993, 53(17), 3976–3985.

    PubMed  CAS  Google Scholar 

  51. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994, 371(6495), 346–347.

    Article  PubMed  CAS  Google Scholar 

  52. Schlegel J, Peters I, Orrenius S, Miller DK, Thornberry NA, Yamin TT, Nicholson DW. CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem. 1996, 271(4), 1841–1844.

    Article  PubMed  CAS  Google Scholar 

  53. Tewari M, Quan LT, K OR, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995, 81(5), 801–809.

    Article  PubMed  CAS  Google Scholar 

  54. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis [see comments]. Nature. 1995, 376(6535), 37–43.

    Article  PubMed  CAS  Google Scholar 

  55. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996, 183(5), 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  56. Rosenthal DS, Ding R, Simbulan-Rosenthal CM, Vaillancourt JP, Nicholson DW, Smulson M. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res. 1997, 232(2), 313–321.

    Article  PubMed  CAS  Google Scholar 

  57. Whitacre CM, Hashimoto H, Tsai ML, Chatterjee S, Berger SJ, Berger NA. Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res. 1995, 55(17), 3697–3701.

    PubMed  CAS  Google Scholar 

  58. Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci USA. 1985, 82, 790–794.

    Article  PubMed  CAS  Google Scholar 

  59. Masutani M, Nozaki T, Wakabayashi K, Sugimura T. Role of poly(ADP-ribose) polymerase in cell-cycle checkpoint mechanisms following gamma-irradiation. Biochimie. 1995, 77(6), 462–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richardson, D.S., Allen, P.D., Kelsey, S.M., Newland, A.C. (1999). Effects of Parp Inhibition on Drug and FAS-Induced Apoptosis in Leukaemic Cells. In: Kaspers, G.J.L., Pieters, R., Veerman, A.J.P. (eds) Drug Resistance in Leukemia and Lymphoma III. Advances in Experimental Medicine and Biology, vol 457. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4811-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4811-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7180-9

  • Online ISBN: 978-1-4615-4811-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics