Skip to main content

Panel Summary: Symbolism and Connectionism Paradigms

  • Chapter
Human and Machine Perception 2

Abstract

The aim of this chapter is to report the panel discussion on symbolism and connectionism paradigms. In particular, the following hot point are analysed:

  • what cognitive phenomena are most difficult for connectionists to explain?

  • what cognitive phenomena are most naturally explained in connectionist terms?

  • is symbolic deduction a central kind of human thinking? How do people make deductions?

  • is nondeductive reasoning done in accord with the laws of probability?

  • what areas of knowledge do you have that are easily described in terms of symbolic rules?

  • concepts reduced to rules, concepts reduced to networks;

  • symbolic and connectionist mechanisms of analogy;

  • planning, decision, explanation, learning, language, in front of the symbolic/connectionist dichotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Thagard, Mind. Introduction to Cognitive Science, The MIT Press, Cambridge, MA (1996).

    Google Scholar 

  2. M. Genesereth and N. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA (1987).

    MATH  Google Scholar 

  3. J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA (1988).

    Google Scholar 

  4. M. Minsky, A framework for representing knowledge, in: The Psychology of Computer Vision, P. Winston ed., McGraw-Hill, New York (1975).

    Google Scholar 

  5. R.C. Schank and R.P. Abelson, Scripts, Plans, Goals, and Understanding, An Inquiry into Human Knowledge Structures, Erlbaum, Hillsdale, NJ (1977).

    Google Scholar 

  6. A. Newell, C. Shaw, and H. Simon, Elements of a theory of human problem solving, Psychological Review 65, 151–166 (1958).

    Article  Google Scholar 

  7. A. Newell and H. Simon, Human Problem Solving, Prentice-Hall, Englewood Cliffs, NJ (1972).

    Google Scholar 

  8. A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge, MA (1990).

    Google Scholar 

  9. J.R. Anderson, Cognitive Science and its Implications, Freeman, New York (1980).

    Google Scholar 

  10. J.R. Anderson, Rules of the Mind, Erlbaum, Hillsdale, NJ (1993).

    Google Scholar 

  11. K. Holyoak and P. Thagard, Mental Leaps: Analogy in Creative Thought, The MIT Press, Cambridge, MA (1995).

    Google Scholar 

  12. S.M. Kosslyn, Image and Brain: The Resolution of the Imagery Debate, The MIT Press, Cambridge, MA (1994).

    Google Scholar 

  13. S.M. Kosslyn and O. Koenig, Wet Mind The New Cognitive Neuroscience, Free Press, New York (1992).

    Google Scholar 

  14. J.I. Glasgow and D. Papadias, Computational imagery, Cognitive Science 16, 355–394 (1992).

    Article  Google Scholar 

  15. D. Mari and T. Poggio, Cooperative computation of stereo disparity, Science 194, 283–287 (1976).

    Article  Google Scholar 

  16. J. Feldman, A connectionist model of visual memory, in: Parallel Models of Associative Memory, G. E. Hinton and J. A. Anderson eds., Erlbaum, Hillsdale, NJ (1981).

    Google Scholar 

  17. J.L. McClelland and D.E. Rumelhart, An interactive activation model of context effects in letter perception. Part I, An account of basic findings, Psychological Review 88, 375–407 (1981).

    Article  Google Scholar 

  18. P.M. Churchland, The Engine of Reason, the Seat of the Soul, The MIT Press, Cambridge, MA (1995).

    Google Scholar 

  19. P. Thagard and E. Millgram, Inference to the best plan: a coherence theory of decision, in: Goal-Driven Learning, A. Ram and D. B. Leake eds., The MIT Press, Camdridge, MA (1995).

    Google Scholar 

  20. S.M. Mannes and W. Kintsch, Routine computing tasks: planning as understanding, Cognitive Science 15, 305–342 (1991).

    Article  Google Scholar 

  21. D. Touretzky and G. Hinton, A distributed production system, Cognitive Science 12, 423–466 (1988).

    Article  Google Scholar 

  22. G. Nelson, P. Thagard, and S. Hardy, Integrating analogies with rules and explanations, in: Advances in Connectionism vol. II, K. Holyoak and J. Barnden eds., Ablex, Norwood, NJ (1994).

    Google Scholar 

  23. P.M. Churchland, A Neurocomputational Perspective, The MIT Press, Cambridge, MA (1989).

    Google Scholar 

  24. P. Thagard, Explanatory coherence, Behavioral and Brain Sciences 12, 435–467 (1989).

    Article  Google Scholar 

  25. P. Thagard, Conceptual Revolutions, Princeton University Press, Princeton (1992).

    Google Scholar 

  26. D.E. Rumelhart, J.L. McClelland, and PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, The MIT Press, Cambridge, MA (1986).

    Google Scholar 

  27. D.E. Rumelhart and J.L. McClelland., An interactive activation model of context effects in letter perception. Part 2, The contextual enhancement effect and some tests extensions of the model, Psychological Review 89, 60–94 (1982).

    Article  Google Scholar 

  28. W. Kintsch, The role of knowledge in discourse comprehension: A construction-integration model, Psychological Review 95, 163–182 (1988).

    Article  Google Scholar 

  29. M.S. Seidenberg and J.L. McClelland, A distributed, developmental model of word recognition and naming, Psychological Review 96, 523–568 (1989).

    Article  Google Scholar 

  30. A. Prince and P. Smolenski, Optimality: from neural networks to universal grammar, Science, 275 1604–1610 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. M.G. Dyer, Symbolic neuroengineering for natural language processing: a multilev approach, in: Advances in Connectionist and Neural Computation Theory vol I, J.A. Barnden and J.B. Pollack eds., Ablex, Norwood, NJ (1991).

    Google Scholar 

  32. L.R. Medsker, Hybrid Neural Networks and Expert Systems, Kluwer, Dordrecht (1994).

    Book  Google Scholar 

  33. E. Burattini, M. De Gregorio, and G. Tamburrini, Hybrid expert systems. An approach combinig neural computation and rule-based reasoning, in: Expert Systems Techniques and Applications, C. D. Leontes ed., Gordon and Breach, London (1998).

    Google Scholar 

  34. A. Chella, M. Frixione, and S. Gaglio, A cognitive architecture for artificial vision, Artificial Intelligence 89, 73–111 (1997).

    Article  MATH  Google Scholar 

  35. A. Chella, M. Frixione, and S. Gaglio, An architecture for autonomous agents exploiting conceptual representations, Robotics and Autonomous Systems 25(3–4), 231–240 (1998).

    Article  Google Scholar 

  36. M. Brady and H. Hu, The mind of a robot, Phil. Trans. R. Soc. Lond. A, 349:15–28 (1994).

    Article  Google Scholar 

  37. P. Gärdenfors, Conceptual Space, Lund University Cognitive Science (1998).

    Google Scholar 

  38. D. Marr and L. Vaina, Representation and recognition of the movements of shapes, Proc. R. Soc. Lond. B 214, 501–524 (1982).

    Article  Google Scholar 

  39. C.R. Gallistel, The Organization of Action: A New Syntesis, Lawrence Erlbaum Associates, Hillsdale, NJ (1980).

    Google Scholar 

  40. J.F. Allen, Towards a general theory of action and time, Artificial Intelligence 23(2), 123–154 (1984).

    Article  MATH  Google Scholar 

  41. R.J. Brachman and J.C. Schmoltze, An overview of the KL-ONE knowledge representation system, Cognitive Science, 9(2), 171–216 (1985).

    Article  Google Scholar 

  42. D.H. Ballard, Cortical connections and parallel processing: structure and function, Behavioral and Brain Sciences 9, 67–120 (1986).

    Article  Google Scholar 

  43. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  44. D. Kleinfeld, Sequential state generation by model neural networks, Proc. Nat. Acad. Sci. USA 83, 9469–9473 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magnani, L., Chella, A., da Fontoura Costa, L. (1999). Panel Summary: Symbolism and Connectionism Paradigms. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4809-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4809-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7179-3

  • Online ISBN: 978-1-4615-4809-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics