Skip to main content

Designer Lewis Acids for Selective Organic Synthesis

  • Chapter
Current Trends in Organic Synthesis
  • 317 Accesses

Abstract

An excellent candidate as a proton substitute in man-made organic reactions is a Lewis acid. The goal of the research was to engineer an artificial proton of a special shape, which could be utilized as an effective tool for chemical reactions, by harnessing the high reactivity of the metal atom towards a variety of functional groups. Such a concept was initially researched by examining the influence of a specially designed organometallic reagent on a typical organic reaction. Michael addition of simple organolithium and magnesium reagent to aromatic aldehydes in the presence of a bulky organoaluminum reagent is described as an example of the concept. The successful discrimination observed led to examine the more intricate question of enantioface differentiation. A variety of Lewis acid reagents were utilized for Diels-Alder, aldol, and ene reactions with high enantioselectivities. The origins of the selectivity of these reactions are discussed. The review describes these points with a variety of designer Lewis acids selected to illustrate the utility of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Maruoka, M. Ito and H. Yamamoto. J. Am. Chem. Soc 117, 9091 (1995).

    Article  CAS  Google Scholar 

  2. S. Saito, K. Shimada, H. Yamamoto, E. Martinez de Marigorta and I. Fleming. Chem Commun. 1299 (1997).

    Google Scholar 

  3. S. Saito, K. Shimada, M. Ito, K. Maruoka and H. Yamamoto. in preparation.

    Google Scholar 

  4. S. Saito, T. Sone, K. Shimada and H. Yamamoto. in preparation.

    Google Scholar 

  5. S. Saito, M. Shiozawa, M. Ito and H. Yamamoto. J. Am. Chem. Soc 120, 813 (1998).

    Article  CAS  Google Scholar 

  6. T. Mukaiyama. InOrganic Reaction Vol. 28 (G. A. Boswell, Jr, R. F. Hirshmann, S. Danishefsky, A. S. Kende, H. W. Gschwend, L. A. Paquette, R. F. Heck, G. H. Posner, B. M. Trost and B. Weinstein, eds.), pp. 203. John Wiley & Sons, New York (1982).

    Google Scholar 

  7. S. Saito, M. Shiozawa and H. Yamamoto. in preparation.

    Google Scholar 

  8. C. Fehr, Angew. Chem. Int. Ed. Engl., 35, 2566 (1996).

    Article  Google Scholar 

  9. K. Ishihara, M. Kaneeda and H. Yamamoto, J. Am. Chem. Soc, 116, 11179 (1994). (b) K. Ishihara, S. Nakamura and H. Yamamoto, Croat. Chem. Acta, 69, 513 (1996). (c) For the enantioselective protonation ofprochiral allyltrimethyltins, see: K. Ishihara, Y. Ishida, S. Nakamura and H. Yamamoto, Synlett, 758 (1997).

    Article  CAS  Google Scholar 

  10. K. Ishihara, S. Nakamura, M. Kaneeda and H. Yamamoto, J. Am. Chem. Soc, 118, 12854 (1996). (b) A. Yanagisawa, K. Ishihara and H. Yamamoto, Synlett, 411 (1997).

    Article  CAS  Google Scholar 

  11. Reviews: (a) W. R. Roush. In Comprehensive Organic Synthesis (B. M. Trost, I. Fleming and C. H. Heathcock, eds.), vol. 2, pp. 1–53. Pergamon Press, Oxford (1991). (b) Y. Yamamoto and N. Asao. Chem. Rev. 93, 2207 (1993). (c)T. Bach. Angew. Chem. Int. Ed. Engl. 33, 417 (1994). (d) A. H. Hoveyda and J. P. Morken. Angew. Chem. Int. Ed. Engl. 35, 1262 (1996).

    Chapter  Google Scholar 

  12. K. Furuta, M. Mouri and H. Yamamoto. Synlett, 561(1991), (b) K. Ishihara, M.Mouri, Q-Gao,T. Maruyama, K. Furuta and H. Yamamoto. J. Am. Chem. Soc 115, 11490 (1993).

    Google Scholar 

  13. S. Aoki, K. Mikami, M. Terada and T. Nakai. Tetrahedron 49, 1783 (1993). (b) A. L. Costa. M. G. Piazza, E. Tagliavini, C. Trombini, A. Umani-Ronchi. J. Am. Chem. Soc 115, 7001 (1993). (c) G. E. Keck, K. H. Tarbet, L. S. Geraci. J. Am. Chem. Soc. 115, 8467 (1993).

    Article  CAS  Google Scholar 

  14. A. Yanagisawa, H. Nakashima, A. Ishiba and H. Yamamoto. J. Am. Chem. Soc 118, 4723 (1996).

    Article  CAS  Google Scholar 

  15. A. Yanagisawa, A. Ishiba, H. Nakashima and H. Yamamoto. Synlett, 88 (1997).

    Google Scholar 

  16. A. Yanagisawa, Y. Nakatsuka, H. Nakashima and H. Yamamoto. Synlett 933 (1997).

    Google Scholar 

  17. Reviews: (a) T. K. Hollis and B. Bosnich. J. Am. Chem. Soc. 117, 4570 (1995). (b) M. Braun. In Houben-Weyl: Methods of Organic Chemistry (G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, eds.), vol. E 21, pp. 1730-1735. Georg Thieme Verlag, Stuttgart (1995). (c) S. G. Nelson. Tetrahedron: Asymmetry 9, 357 (1998).

    Article  CAS  Google Scholar 

  18. A. Yanagisawa, Y. Matsumoto, H. Nakashima, K. Asakawa and H. Yamamoto. J. Am. Chem. Soc. 119, 9319 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, H., Yanagisawa, A., Ishihara, K., Saito, S. (1999). Designer Lewis Acids for Selective Organic Synthesis. In: Scolastico, C., Nicotra, F. (eds) Current Trends in Organic Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4801-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4801-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7175-5

  • Online ISBN: 978-1-4615-4801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics