Skip to main content

Sulfur Ylide Mediated Catalytic Asymmetric Epoxidation and Aziridination

  • Chapter
Current Trends in Organic Synthesis

Abstract

The development of catalytic methods for the synthesis of non-racemic epoxides has been a long standing goal in asymmetric synthesis. For epoxide synthesis, attention has largely focused on the asymmetric oxidation of alkenes and good enantioselectivities are now beginning to emerge for an increasing range of substrates.1-3 Alkenes are themselves commonly obtained by Wittig reaction from the corresponding aldehyde or ketone and so epoxidation is usually a two step process from carbonyl compounds. However, in terms of efficiency and atom economy this overall process is poor compared to direct epoxidation of carbonyl compounds using sulfur ylides. However, in terms of catalysis and asymmetric induction, oxidation of alkenes is still superior as epoxidation of carbonyl compounds using sulfur ylides usually requires stoichiometric amounts of sulfides/sulfur ylides and only gives moderate enantioselectivities.4 We have described a catalytic process for epoxidation involving sulfur ylides which now overcomes this limitation (Scheme 1).5 Whilst only low levels of enantioselectivity were originally achieved we now report significant improvements and describe chiral sulfides which provide high levels of asymmetric induction.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Katsuki and V. S. Martin, Org. React. (N. Y.), 1996, 48, 1.

    CAS  Google Scholar 

  2. E. N. Jacobson, Catalytic Asymmetric Synthesis; I. Ojima, Ed., VCH, New York, 1993, pp. 159.

    Google Scholar 

  3. Z.-X. Wang, Y. Tu, M. Frohn, J.-R. Zhang, and Y. Shi, J. Am. Chem. Soc., 1997, 119, 11224.

    Article  CAS  Google Scholar 

  4. A. H. Li, L. X. Dai, and V. K. Aggarwal, Chem. Rev., 1997, 97, 2341.

    Article  CAS  Google Scholar 

  5. V. K. Aggarwal, H. Abdel-Rahman, F. Li, R. V. H. Jones, and M. Standen, Chem. Eur. Jn., 1996, 2, 212.

    Google Scholar 

  6. V. K. Aggarwal, J. G. Ford, A. Thompson, R. V. H. Jones, and M. Standen, J. Am. Chem. Soc., 1996, 118, 7004.

    Article  CAS  Google Scholar 

  7. X. Creary, Org. Synth, 1986, 64, 207.

    CAS  Google Scholar 

  8. D. S. Wulfman, S. Yousefian, and J. M. White, Synth. Comm., 1988, 18, 2349.

    Article  CAS  Google Scholar 

  9. K. B. Hansen, N. S. Finney, and E. N. Jacobsen, Angew. Chem., Int. Ed. Engl., 1995, 34, 676.

    Article  CAS  Google Scholar 

  10. K. G. Rasmussen and K. A. Jorgensen, J. Chem. Soc, Chem. Commun., 1995, 1401.

    Google Scholar 

  11. D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson, and D. M. Barnes, J. Am. Chem. Soc., 1993, 115, 5328.

    Article  CAS  Google Scholar 

  12. E. Vedejs and S. Z. Lin, J. Org. Chem., 1994, 59, 1602.

    Article  CAS  Google Scholar 

  13. T. Fukuyama, C. K. Jow, and M. Cheung, Tetrahedron Lett., 1995, 36, 6373.

    Article  CAS  Google Scholar 

  14. V. K. Aggarwal, A. Thompson, R. V. H. Jones, and M. C. H. Standen, J. Org. Chem., 1996, 61, 8368.

    Article  CAS  Google Scholar 

  15. W. B. Jennings and C. J. Lovely, Tetrahedron, 1991, 47, 5561

    Article  CAS  Google Scholar 

  16. S. M. Weinreb, D. M. Demko, and T. A. Lessen, Tet. Lett., 1986, 27, 2099.

    Article  CAS  Google Scholar 

  17. A. J. Speziale, C. C. Tung, K. W. Ratts, and A. Yao, J. Am. Chem. Soc., 1965, 87, 3460.

    Article  CAS  Google Scholar 

  18. K. W. Ratts and A. N. Yao, J. Org. Chem., 1966, 31, 1689.

    Article  CAS  Google Scholar 

  19. C. R. Johnson and D. McCants, J. Am. Chem. Soc., 1965, 87, 1109.

    Article  CAS  Google Scholar 

  20. The quality of the Cu(acac)2 is critical to the success of the reaction. Use of commercial Cu(acac)2 was ineffective but use of Cu(acac)2 prepared by the method of Cervelló followed by sublimation was successful; Cervelló, J.; Marquet, J.; Moreno-Mañas, M. Synth. Commun. 1990, 20, 1931–1941.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aggarwal, V.K., Ford, J.G., Thompson, A., Studley, J., Jones, R.V.H., Fieldhouse, R. (1999). Sulfur Ylide Mediated Catalytic Asymmetric Epoxidation and Aziridination. In: Scolastico, C., Nicotra, F. (eds) Current Trends in Organic Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4801-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4801-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7175-5

  • Online ISBN: 978-1-4615-4801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics