Skip to main content

Large Scale Catalytic Asymmetric Hydrogenation, an Industrial Perspective

  • Chapter
Current Trends in Organic Synthesis
  • 319 Accesses

Abstract

During the last two decades an increasing number of catalytic, enantioselective reactions have been developed.1 Life science companies, which increasingly demand the preparation of enantiomerically pure products on large scale, have also fuelled the development of such methodologies with an emphasis on manufacturability.2 Asymmetric hydrogenations of prochiral C=C, C=O and C=N double bonds, catalysed by chiral transition metal complexes are highly attractive and continue to be an efficient method for generating stereogenic centres in an enantioselective fashion.1c Critical factors which determine the outcome of an enantioselective hydrogenation on large scale are outlined in Figure 1. The chemistry of specific examples from LONZA’s own experience with this technology is presented in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Ojima. Catalytic Asymmetric Synthesis, VCH Publishers Inc., New York (1993).

    Google Scholar 

  2. D.J. Ager, M.B. East. Asymmetric Synthetic Methodology, CRC Press, Inc., Boca Raton (1996).

    Google Scholar 

  3. R. Noyori. Asymmetric Catalysis in Organic Chemistry, New York (1994).

    Google Scholar 

  4. I.W. Davis, P.J. Reider, Practical asymmetric synthesis, Chemistry and Industry 3 June: 412(1996).

    Google Scholar 

  5. P.J. De Clercq, Biotin: a timeless challenge for total synthesis, Chem. Rev. 97: 1755 (1997).

    Article  Google Scholar 

  6. T. Meul, R. Miller, L. Tenud, Ökonomische Herstellung von Feinchemikalien: Tetronsäure, Chimia 41: 73 (1987).

    CAS  Google Scholar 

  7. J. Mc Garrity, L. Tenud, EP Appl. EP 273 270; CA 110: 75 168j (1988).

    Google Scholar 

  8. M. Eyer, R. Fuchs,, J. Mc Garrity, EP Appl. EP 602 653; CA 121: 230 774b (1994).

    Google Scholar 

  9. M. Eyer, R.E. Merrill, PCT Int. Appl. WO 94 24 137; CA 122: 56 043w (1994).

    Google Scholar 

  10. J. Mc Garrity, F. Spindler, R. Fuchs, M. Eyer, EP Appl. EP 624 587; CA 122: 81 369q(1994).

    Google Scholar 

  11. W. Brieden, Taking the right route to the manufacture of enantiomerically pure fine chemicals, Proceedings of the Chiral USA’ 97 Symposium, p. 45.

    Google Scholar 

  12. E. Felder, S. Maffei, S. Pietra, D. Pitré, Über die katalytische Hydrierung von Pyrazincarbonsäuren, Helv. Chim. Acta 43: 888 (1960).

    Article  CAS  Google Scholar 

  13. K. Rossen, S.A. Weissman, J. Sager, D. Askin, R.P. Volante, P.J. Reider, Asymmetric hydrogenation of tetrahydropyrazines: synthesis of (S)-piperazine-2-tert-butylcarboxamide, an intermediate in the preparation of the HIV protease inhibitor Indinavir, Tetrahedron Lett. 36: 6419 (1995).

    Article  CAS  Google Scholar 

  14. R. Fuchs, EP Appl. EP 803 502; CA 128: 13 286 (1997).

    Google Scholar 

  15. D.C. Muchmore, US Patent 5 215 918 (1993).

    Google Scholar 

  16. W. Brieden, EP Appl. EP 785 198; CA 127: 176 346 (1997).

    Google Scholar 

  17. M. Kitamura, Y. Hsiao, M. Ohta, M. Tsukamoto, T. Ohta, H. Takaya, R. Noyori, General asymmetric synthesis of isoquinoline alkaloids. Enantioselective hydrogenation of enamides catalyzed by BINAP-Ruthenium(II) complexes, J. Org. Chem. 59: 297(1994).

    Article  CAS  Google Scholar 

  18. B. Heiser, E.A. Broger, Y. Crameri, New efficient methods for the synthesis and in-situ preparation of Ruthenium(II) complexes of atropisomeric diphosphines and their application in asymmetric catalytic hydrogenations, Tetrahedron: Asymmetry 2: 51 (1991).

    Article  CAS  Google Scholar 

  19. O. Werbitzky, PCT Int. Appl. WO 97 03 052 (1997).

    Google Scholar 

  20. O. Werbitzky, Technical synthesis of a morphine alkaloid through an enantioselective hydrogenation of a cyclic imine, Proceedings of the Chiral Europe’ 97 Symposium, p. 37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brieden, W. (1999). Large Scale Catalytic Asymmetric Hydrogenation, an Industrial Perspective. In: Scolastico, C., Nicotra, F. (eds) Current Trends in Organic Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4801-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4801-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7175-5

  • Online ISBN: 978-1-4615-4801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics