Skip to main content

Di-π-Methane Photorearrangement of 2,3-Disubstituted Benzobarrelenes and Benzonorbornadienes: Effect of Substituents of Opposite Polarity on the Regioselectivity and Synthesis of Benzopinane Skeleton

  • Chapter
Current Trends in Organic Synthesis
  • 307 Accesses

Abstract

The di-π-methane rearrangement was shown to be a general photochemical process that occurs from excited states of molecules having two π-moieties bonded to a single atom-most generally carbon.1 This mechanism is shown as outlined in Equation 1. In most cases the photochemical reaction proceeds from the excited singlet state in acyclic systems and from the excited triplet state in bicyclic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. E. Zimmerman, and D. Armesto, Chem. Rev. 96: 3065 (1996); S. S. Hixon, P. S. Marino, and H. E. Zimmerman, Chem. Rev. 73:531 (1973); H. E. Zimmerman, R. S. Givens M. R. Pagni, J. Am. Chem. Soc. 90:6096 (1968); H. E. Zimmerman, The di-π-methane rearrangement in CRC Handbook of Organic Photochemistry and Photobiology, W. M. Horspool and P. S. Song, ed. CRC Press, New York (1995).

    Article  CAS  Google Scholar 

  2. C. C. Liao, and P. H. Yang, Photorearrangement of benzobarrelenes and related analogues in CRC Handbook of Organic Photochemistry and Photobiology, W. M. Horspool and P. S. Song, ed. CRC Press, New York (1995).

    Google Scholar 

  3. C. O. Bender, D. W. Brooks, W. Cheng, D. Dolman, S. F. Oshea, and S. S. Shugarman, Can. J. Chem. 56: 3027 (1978), C. O. Bender, E. H. King-Brown J. Chem. Soc. Chem. Commun.878 (1976); C. O. Bender, D. L. Bengston, D. Dolman, C. E. L. Herle, and S. F. Oshea,, Can. J. Chem. 60:1942, (1982); C. O. Bender, J. Wilson, Helv. Chim. Acta 59:1469 (1976)

    Article  CAS  Google Scholar 

  4. L. A. Paquette, A. Y. Ku, C. Santiago, M. D. Rozeboom, and K. N. Hook, J. Am. Chem. Soc. 101: 5981 (1979).

    Article  Google Scholar 

  5. H. Hemetsberger, and M. Nobbe, Tetrahedron, 44: 67 (1988).

    Article  CAS  Google Scholar 

  6. M. Balci, O. Çakmak, and T. Hökelek Tetrahedron, 48: 3163 (1992).

    Article  CAS  Google Scholar 

  7. R. Altundaş, and Metin Balci, Aust. J. Chem. 50: 787 (1997).

    Article  Google Scholar 

  8. C. O. Bender, and S. S. Shugarman, J. Chem. Soc. Chem. Commun. 934 (1974); Can. J. Chem. 56:3027 (1978), C. 0. Bender, E. H. King-Brown J. Chem. Soc. Chem. Commun. 878 (1976).

    Google Scholar 

  9. F. G. Bordwell, and T. Y. Lunch, J. Am. Chem. Soc. 111: 7558 (1989).

    Article  CAS  Google Scholar 

  10. R. Hoffmann, Tetrahedron Lett. 2907 (1970); H. Günther, Tetrahedron Lett. 2907 (1970); M. Balci, H. Fischer, H. Günther, Angew Chem. Int. Ed. Engl. 9:30 (1980); M. Balci, Turk. J. Chem. 16:42 (1992).

    Google Scholar 

  11. W. J. Jorgenson, and L. Salem in The Organic Chemist’s Book of Orbitals Academic Press, New York, (1973); R. Hoffmann, W. D. Stohrer, J. Am. Chem. Soc. 93:6941 (1971).

    Google Scholar 

  12. A. Daştan, B. Demirci, and M. Balci, unpublished results.

    Google Scholar 

  13. R. A. Raphael in Chemistry of Carbon Compounds, E. Rood, ed., Elsevier, Amsterdam, II A, p 314 (1953).

    Google Scholar 

  14. P. Yates, and R.J. Crawford, J. Am. Chem. Soc. 88: 1562 (1966).

    Article  CAS  Google Scholar 

  15. K.B. Wiberg, and B. A. Hess, J. Org. Chem. 31: 2270 (1966)

    Article  Google Scholar 

  16. E. Wenkert, P. Bakuzis, R.J. Baumgarten, D. Doddrel, P. W. Jeffs, C.L. Leicht, R.A. Mueller, and A. Yoshikoshi, J. Am. Chem. Soc. 1970, 92: 1617 (1970).

    Article  CAS  Google Scholar 

  17. B. Atasoy, F. Bayramoglu, and T. Hökelek, Tetrahedron; 50: 5753 (1994); N. Butler, R. A. Snow, Can. J. Chem. 53:256(1975)

    Article  CAS  Google Scholar 

  18. A. Altundaş, N. Akbulut, and M. Balci 81: 828 (1998).

    Google Scholar 

  19. H.E. Zimmerman, R.J. Boettcherr, N.E. Buehler, G.E. Keck, and M.G. Steimetz, J. Am. Chem. Soc. 98: 7680 (1976); W. Adam, O. de Lucchi, and I. Erden, J. Am. Chem. Soc. 102:4806 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balci, M. (1999). Di-π-Methane Photorearrangement of 2,3-Disubstituted Benzobarrelenes and Benzonorbornadienes: Effect of Substituents of Opposite Polarity on the Regioselectivity and Synthesis of Benzopinane Skeleton. In: Scolastico, C., Nicotra, F. (eds) Current Trends in Organic Synthesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4801-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4801-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7175-5

  • Online ISBN: 978-1-4615-4801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics