Skip to main content

Cloning and Developmental Expression of a Nodule-Enhanced Sucrose Synthase cDNA from Alfalfa

  • Chapter
Highlights of Nitrogen Fixation Research

Abstract

The carbon (C) cost for symbiotic nitrogen (N) fixation is quite high. The ultimate source of C for N2 fixation is sucrose derived from leaves. For use in root nodules, sucrose must be cleaved to glucose and other smaller carbon compounds. Here we report the isolation and characterization of a full length cDNA encoding the enzyme sucrose synthase (SS; EC 2.4.1.13). This SS cDNA shows greatest expression in effective nitrogen-fixing nodules. It is also expressed in stems and roots with little expression in leaves and cotyledons. While maximum expression of SS in nodules appears to require active nitrogenase, the gene is also expressed in ineffective nodules, albeit at reduced levels. Measurement of starch concentrations in nodules shows that SS expression is not coupled to starch biosynthesis. In situ hybridization studies show that expression of SS occurs in both infected and uninfected cells and in the nodule meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthon GE and Emerich DW 1990. Developmental regulation of enzymes of sucrose and hexose metabolism in effective and ineffective soybean nodules. Plant Physiol. 92, 346–351.

    Article  PubMed  CAS  Google Scholar 

  • Arai M, Mori H, and Imaseki H 1992. Expression of the gene for sucrose synthase during growth of mung bean seedlings. Plant Cell Physiol. 33, 503–506.

    CAS  Google Scholar 

  • Chopra S, Del-favero J, Dolferus R, and Jacobs M 1992. Sucrose synthase of Arabidopsis: Genomic cloning and sequence characterization. Plant Mol. Biol. 18,131–134.

    CAS  Google Scholar 

  • Chourey PS and Taliercio EW 1994. Epistatic interaction and functional compensation between the two tissue-and cell-specific sucrose synthase genes in maize. Proc. Natl. Acad. Sci., USA 91, 7917–7921.

    Article  PubMed  CAS  Google Scholar 

  • Chourey PS, Taliercio EW, and Kane EJ 1991. Tissue-specific expression and anaerobically induced post-transcriptional modulation of sucrose synthase genes in Sorghum bicolor M. Plant Physiol. 96, 485–490.

    Article  PubMed  CAS  Google Scholar 

  • Day DA and Copeland L 1991. Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol. Biochem. 19, 185–201.

    Google Scholar 

  • Egli MA, Griffith SM, Miller SS, Anderson MP, and Vance CP 1989. Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol. 91, 898–904.

    Article  PubMed  CAS  Google Scholar 

  • Egli MA, Larson RI, Hruschka WR, and Vance CP 1991. Synthesis of nodulins and nodule-enhanced polypeptides by plant gene-controlled ineffective alfalfa nodules. J. Exp. Bot. 42, 969–977.

    Article  CAS  Google Scholar 

  • Gantt JS, Larson RJ, Farnham MW, Pathirana SM, Miller SS, and Vance CP 1992. Aspartate aminotransferase in effective and ineffective alfalfa nodules: Cloning of a cDNA and determination of enzyme activity, protein, and mRNA levels. Plant Physiol. 98, 868–878.

    Article  PubMed  CAS  Google Scholar 

  • van Ghelue M, Ribeiro A, Solheim B, Akkermans ADL, Bisseling T, and Pawlowski K 1996. Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: comparison with legume nodules. Mol. Gen. Genet. 250, 437–446.

    Article  PubMed  Google Scholar 

  • Gordon AJ, Minchin FR, Skpt L, and James CL 1997a. Stress-induced declines in soybean N2 fixation are related to nodule sucrose synthase activity. Plant Physiol. 114, 937–946.

    CAS  Google Scholar 

  • Gordon AJ, Slot L, Minchin FR, Webb KJ, Wang TL, Hedley CL, Craig J, and Smith AM 1997b. Down regulation of nodule sucrose synthase by mutation and antisense. In Biological Nitrogen Fixation for the 21st Century. Eds. C Elmercih, A Kondorosi, WE Newton. p 473. Kluwer Academic Publishers, Dordrecht, Netherlands ISBN 0–7923–4834–6.

    Google Scholar 

  • Gordon AJ, Thomas BJ, and James CL 1995. The location of sucrose synthase in root nodules of white clover. New Phytol. 130, 523–530.

    Article  CAS  Google Scholar 

  • Gordon AJ, Thomas BJ, and Reynolds PHS 1992. Localization of sucrose synthase in soybean root nodules. New Phytol. 122, 35–44.

    Article  CAS  Google Scholar 

  • Gregerson RG, Miller SS, Twary SN, Gantt JS, and Vance CP 1993. Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. The Plant Cell 5, 215–226.

    PubMed  CAS  Google Scholar 

  • Heim U, Weber H, Bäumlein K, and Wobus U 1993. A sucrose-synthase gene of Vicia faba L.: Expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta 191, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Henson CA and Collins M 1984. Carbon metabolism in alfalfa root nodules: developmental patterns of host plant enzymes before and after shoot removal. Crop Sci. 24, 727–732.

    Article  Google Scholar 

  • Huber SC, Huber JL, Liao PC, Gage DA, McMichael RW, Chourey PS, Hannah LC, and Koch K 1996. Phosphorylation of serine-15 of maize leaf sucrose synthase. Plant Physiol. 112, 793–802.

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Nolte KD, Duke ER, McCarty DR, and Avigne WT 1992. Sugar levels modulate differential expres-sion of maize sucrose synthase genes. The Plant Cell 4, 59–69.

    PubMed  CAS  Google Scholar 

  • Küster H, Frühling M, Perlick AM, and Pühler A 1993. The sucrose synthase gene is predominantly expressed in the root nodule tissue of Vicia faba. Mol. Plant-Microbe Inter. 6, 507–514.

    Article  Google Scholar 

  • Martin T, Frommer WB, Salanoubat M, and Willmitzer L 1993. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. The Plant J. 4, 367–377.

    Article  CAS  Google Scholar 

  • Maxwell CA, Vance CP, Heichel GH, and Stade S 1984. CO2 fixation in alfalfa and birdsfoot trefoil root nodules and partitioning of 14C to the plant. Crop Sci. 24, 257–264.

    Article  CAS  Google Scholar 

  • Morell M and Copeland L 1985. Sucrose synthase of soybean nodules. Plant Physiol. 78, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • de la Pena TC, Frugier F, McKhann HI, Bauer P, Brown S, Kondorosi A, and Crespi M 1997. A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J. 11, 407–420.

    Article  Google Scholar 

  • Peterson MA and Barnes DK 1981. Inheritance of ineffective nodulation and non-nodulation traits in alfalfa. Crop Sci. 21, 611–616.

    Article  Google Scholar 

  • Plaxton WC 1996. The organization and regulation of plant glycolysis. Annu. Plant Physiol. Plant Mol. Biol. 47, 185–214.

    Article  CAS  Google Scholar 

  • Reibach PH and Streeter JG 1983. Metabolism of 14C-labeled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules. Plant Physiol. 72, 634–640.

    Article  PubMed  CAS  Google Scholar 

  • Ricard B, Rivoal J, Spiteri A, and Pradet A 1991. Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol. 95, 669–674.

    Article  PubMed  CAS  Google Scholar 

  • Romanov VI, Gordon AJ, Minchin FR, Witty JE, Skøt L, James CL, Borisov AY, and Tikhonovich IA 1995. Anatomy, physiology and biochemistry of sprint-2 Fix-, a symbiotically defective mutant of pea (Pisum sativum L.). J. Exp. Bot. 46, 1809–1816.

    Article  CAS  Google Scholar 

  • Schubert KR 1986. Products of biological nitrogen fixation in higher plants: Synthesis transport and metabolism. Annu. Rev. Plant Physiol. 37, 539–574.

    Article  CAS  Google Scholar 

  • Schuller KA and Werner D 1993. Phosphorylation of soybean (Glycine max L) nodule phosphoenolpyruvate carboxylase in vivo decreases sensitivity to malate. Plant Physiol. 101, 1267–1273.

    PubMed  CAS  Google Scholar 

  • Shure M, Wessler M, and Federoff N 1983. Molecular identification and isolation of the Waxy locus in maize. Cell 35, 235–242.

    Article  PubMed  Google Scholar 

  • Skøt L, Timms E, Fortune MT, Webb KJ, and Gordon AJ 1996. Analysis of two nodulins, sucrose synthase and ENOD2, in transgenic Lotus plants. Plant Soil 186, 99–106.

    Article  Google Scholar 

  • Sturm A, Sebková V, Lorenz K, Hardegger M, Lienhard S, and Unger C 1995. Development-and organ-specific expression of the genes for sucrose synthase and three isoenzymes of acid ß-fructofuranosidase in carrot. Planta 195, 601–610.

    Article  CAS  Google Scholar 

  • Taliercio EW and Chourey PS 1989. Post-transcriptional control of sucrose synthase expression in anaerobic seedlings of maize. Plant Physiol. 90, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  • Thummler F and Verma DPS 1987. Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules. The J. Biol. Chem. 262, 14730–14736.

    CAS  Google Scholar 

  • Tollenaar M and Daynard TB 1978. Dry weight, soluble sugar content, and starch content of maize kernels during the early post-silking period. Can. J. Plant Sci. 58, 199–206.

    Article  Google Scholar 

  • Udvardi MK and Day DA 1997. Metabolic transport across symbiotic membranes of legumes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 493–523.

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Gregerson RG, Robinson DL, Miller SS, and Gantt JS 1994. Primary assimilation of nitrogen in alfalfa nodules: molecular features of the enzymes involved. Plant Sci. 101, 51–64.

    Article  CAS  Google Scholar 

  • Vance CP and Heichel GH 1991. Carbon in N2 fixation: Limitation or exquisite adaptation? Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 373–392.

    Article  CAS  Google Scholar 

  • Vasse J, de Billy F, Camut S, and Truchet G 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172, 4295–4302.

    PubMed  CAS  Google Scholar 

  • de Visser R 1985. Efficiency of respiration and energy requirements of N assimilation in roots of Pisum sativum. Physiol. Plant. 65, 209–218.

    Article  Google Scholar 

  • Wang F, Smith AG, and Brenner ML 1994. Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol. 104, 535–540.

    PubMed  CAS  Google Scholar 

  • Witty JF, Minchin FR, Slot L, and Sheehy JE 1986. Nitrogen fixation and oxygen in legume root nodules. Oxford Surveys Plant Mol. Cell Biol. 3, 275–314.

    CAS  Google Scholar 

  • Zammit A and Copeland L 1993. Immunocyto-chemical localization of nodule-specific sucrose synthase in soybean nodules. Aust. J. Plant Physiol. 20, 25–32.

    CAS  Google Scholar 

  • Zhang X-Q, Li B, and Chollet R 1995. In vivo regulatory phosphorylation of soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol. 108, 1561–1568.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinson, D.L. et al. (1999). Cloning and Developmental Expression of a Nodule-Enhanced Sucrose Synthase cDNA from Alfalfa. In: Martĺnez, E., Hernández, G. (eds) Highlights of Nitrogen Fixation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4795-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4795-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7172-4

  • Online ISBN: 978-1-4615-4795-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics