Skip to main content

Agricultural and Environmental Applications of Nitrogen Fixing Organisms

  • Chapter
Highlights of Nitrogen Fixation Research

Abstract

The wide-scale application of wild-type or genetically-modified nitrogen-fixing bacteria to agricultural production fields presents some challenging, and often insurmountable, problems. Faced with a new and potentially hostile environment, applied inoculants often fail to increase plant productivity. There are a large number of diverse environmental factors that have been thought to limit the effectiveness of inoculants. The abiotic factors include: nutrient limitations, soil moisture, pH, temperature, texture, and organic matter content, inoculant placement and mobility, and soil solute types and concentrations. On the other hand, biotic constraints have also been shown to influence the efficacy of nitrogen-fixing inoculants and include: habitat provision, bacteriocin, and antibiotic production, numbers and types of indigenous microorganisms, selective predation by protozoa, residence time in soils, and time in laboratory culture prior to reintroduction into soils. The majority of these studies have been done with inoculants containing the root nodule symbionts of legumes, Rhizobium, Bradyrhizobium, Sinorhizobium, Mesorhizobium, and Azorhizobium, collectively called “rhizobia”. Equal problems, however, are likely with inoculation of other N2-fixing organisms, including Frankia, Acetobacter, and Herbaspirillum. While some of the factors affecting the efficacy of legume inoculants have been studied for decades, there has been only limited advancement, at the fundamental level, of our understanding of how these variables directly influence strain survival and competence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel GH and Erdman LW 1964. Response of Lee soybeans to different strains of Rhizobium japonicum, Agron. J. 56 423–424.

    Article  Google Scholar 

  • Berg RK, Loynachan TE, Zablotowicz RM, and Liebermann MT 1988. Nodule occupancy by introduced Bradyrhizobium japonicum in Iowa soils, Agron. J. 80 876–891.

    Article  Google Scholar 

  • Boonkerd N, Weber DF, and Bezdicek DF 1978. Influence of Rhizobium japonicum strains and inoculation methods on soybean growth in rhizobia-populated soils, Agron. J. 70 547–549.

    Article  Google Scholar 

  • Bottomley PJ 1992. Ecology of Bradyrhizobium and Rhizobium. In Biological nitrogen fixation, G Stacey et al., (Eds.) Chapman and Hall, New York. pp 293–348.

    Google Scholar 

  • Brockwell J, Bottomley PJ, and Thies JE 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility, a critical assessment, Plant Soil 174 143–180.

    Article  CAS  Google Scholar 

  • Brockwell J and Bottomley PJ 1995. Recent advances in inoculant technology and prospects for the future, Soil Biol. Biochem. 27 683–697.

    CAS  Google Scholar 

  • Brunel B, Cleyet-Marel J-C, Normand P, and Bardin R 1988. Stability of Bradyrhizobium japonicum inoculants after introduction into soil, Appl. Environ. Microbiol. 54 2636–2242.

    CAS  Google Scholar 

  • Caldwell BE 1969. Initial competition of root nodule bacteria on soybeans in a field environment, Agron. J. 61 813–815.

    Article  Google Scholar 

  • Cregan PB and Keyser HH 1986. Host restriction of nodulation by Bradyrhizobium japonicum strain USDA 123, Crop Sci. 26 911–916.

    Article  Google Scholar 

  • Date RA 1991. Nodulation success and persistence of recommended inoculum strains for subtropical and tropical forage legumes in Northern Australia, Soil Biol. Biochem. 23 533–541.

    Google Scholar 

  • Diatloff A 1977. Ecological studies of root-nodule bacteria introduced into field environments. 6. Antigenic and symbiotic stability in Lotononis rhizobia over a 12 year period, Soil Biol. Biochem. 9 85–88.

    Google Scholar 

  • Dunigan EP, Bollich PK, Hutchinson RL, Hicks PM, Zaunbrecher FC, Scott SG, and Mowers RP 1984. Introduction and survival of an inoculant strain of Rhizobium japonicum in soil, Agron. J. 76 463–466.

    Article  Google Scholar 

  • Ellis WR, Ham GE, and Schmidt EL 1984. Persistence and recovery of Rhizobium japonicum inoculum in a field soil, Agron. J. 76 573–576.

    Article  Google Scholar 

  • Evans J, Gregory A, Dobrowolski N, Morris SG, O’Connor GE, and Wallace C 1996. Nodulation of field grown Pisum sativum and faba: competitiveness of inoculant strains of Rhizobium leguminosarum bv viciae determined by an indirect, competitive ELISA method, Soil Biol. Biochem. 28 247–255

    CAS  Google Scholar 

  • Ferrey ML, Graham PH, and Russelle MP (1994). Nodulation efficiency of Bradyrhizobium japonicum strains with genotypes of soybean varying in the ability to resist nodulation, Can. J. Microbiol. 40 456–460.

    Google Scholar 

  • Graham PH 1985. Problems of soybean inoculation in the tropics, Proc. III World Soybean Conf. (Ames). R Shibles (Ed.) pp 951–959.

    Google Scholar 

  • Guar YD and Lowther WL 1980. Distribution, symbiotic effectiveness, and fluorescent antibody reaction of naturalized populations of Rhizobium trifolii in Otago soils, New Zealand J. Agric. Res. 23 529–532.

    Article  Google Scholar 

  • Ham GE 1978. Interactions of Glycine max and Rhizobium japonicum, in Advances in legume science, RJ Summerfield and AH Bunting (eds.) Royal Botanic Gardens, Kew pp 289–296.

    Google Scholar 

  • Herridge DF and Rose IA 1994. Heritability and repeatability of enhanced N2 fixation in early and late inbreeding generations of soybean. Crop Sci. 34 360–367.

    Article  CAS  Google Scholar 

  • Klubek BP, Hendrickson LL, Zablotowicz RM, Skwara JE, Varsa EC, Smith S, Isleib TG, Maya J, Valdes M, Dazzo FB, Todd RL, and Walgenback DD 1988. Competitiveness of selected Bradyrhizobium japonicum strains in Midwestern USA soils, Soil Sci. Amer. J. 52 662–666.

    Google Scholar 

  • Kucey RMN and Hynes MF 1989. Populations of Rhizobium leguminosarum by. phaseoli and viciae in fields of bean or pea in rotation with non legumes, Can. J. Microbiol. 35 661–667.

    Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras JM, and Alabouvette C 1995. Effect of two plant species Flax (Linum usitatissinum) and Tomato (Lycopersicon esculentum Mill), on the diversity of soilborne populations of fluorescent pseudomonads. Appl. Environ. Microbiol. 611004–1012.

    CAS  Google Scholar 

  • McDermott TR and Graham PH 1989. Bradyrhizobium japonicum inoculant mobility, nodule occupancy and acetylene reduction in the soybean root system, Appl. Environ. Microbiol. 55 2493–2498.

    Google Scholar 

  • McDermott TR and Graham PH 1990. Competitive ability and efficiency in nodule formation of strains of Bradyrhizobium japonicum, Appl. Environ. Microbiol. 56 3035–3039.

    Google Scholar 

  • McLoughlin TJ, Merlo AO, Satola SW, and Johansen E 1987. Isolation of competition-defective mutants of Rhizobium fredii, J. Bacteriol. 169 410–413.

    Google Scholar 

  • Moawad HA, Ellis WR, and Schmidt EL 1984. Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field grown soybeans, Appl. Environ. Microbiol. 47 607–612.

    CAS  Google Scholar 

  • Pazdernik DL, Graham PH, and Orf JH 1997. Heritability in the early nodulation of F3 and F4 soybean lines. Can. J. Plant Sci. 77 201–205.

    Google Scholar 

  • Roughley RJ, Gemell LG, Thompson JA, and Brockwell J 1993. The number of Bradyrhizobium sp. (Lupinus) applied to seed and its effect on rhizosphere colonization, nodulation, and yield of Lupin, Soil. Biol. Biochem. 251453–1458.

    Google Scholar 

  • Sadowsky MJ, Tully RE, Cregan PB, and Keyser HH 1987. Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybeans, Appl. Environ. Microbiol. 53 2624–2630.

    CAS  Google Scholar 

  • Sanginga N, Danso SKA, Mulongoy K, and Ojeifo AA 1994. Persistence and recovery of introduced Rhizobium 10 years after inoculation on Leucaena leucocephala grown on an alfisol in southwestern Nigeria, Plant Soil 159 199–204.

    Article  Google Scholar 

  • Singleton PW and Tavares JW 1986. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations, Appl. Environ. Microbiol. 51 1013–1018.

    CAS  Google Scholar 

  • Slattery JA and Coventry TR 1993. Variation of soil populations of Rhizobium leguminosarum by. trifolii and the occurrence of inoculant rhizobia in nodules of subterranean clover after pasture renovation in north eastern Victoria, Soil Biol. Biochem. 251725–1730.

    Google Scholar 

  • Smith RS 1992. Legume inoculant formulation and application, Can. J. Microbiol. 38 485–492.

    Google Scholar 

  • Smith GB and Wollum AM 1989. Nodulation of Glycine max by six Bradyrhizobium japonicum strains with different competitive abilities, Appl. Environ. Microbiol. 55 1957–1962.

    Google Scholar 

  • Somasegaran P and Hoben TJ 1994. Handbook for rhizobia. Springer Verlag, New York, pp 450.

    Book  Google Scholar 

  • Soto Maria J, Zorzano A, and Mercado-Blanco J 1993. Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes, nfe. J. Molec. Biol. 229 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Thies JE, Singleton PW, and Bohlool BB 1991. Influence of size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes, Appl. Epviron. Microbiol. 57 19–28.

    CAS  Google Scholar 

  • van Veen JA, van Overbeek LS, and van Elsas JD 1997. Fate and activity of microorganisms introduced into soil. Microbiol. Molec. Biol. Rev. 61 121–135.

    Google Scholar 

  • Vincent JM 1970. A manual for the practical study of root-nodule bacteria. IBP Handbook No15, Blackwell Scientific Publications, Oxford, pp 164.

    Google Scholar 

  • Weaver RAW and Frederick LR 1974a. Effect of inoculum rate on competitive nodulation of Glycine max (L.) Merrill. II. Field studies, Agron. J. 66 233–236.

    Google Scholar 

  • Weaver RW, Frederick LR, and Dumenil LC 1972. Effect of soybean cropping and soil properties on numbers of Rhizobium japonicum in Iowa soils, Soil Sci. 114 137–141.

    Article  Google Scholar 

  • Wilson DO 1975. Nitrogen fixation by soybeans as influenced by inoculum placement, Agron. J. 67 76–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sadowsky, M.J., Graham, P.H. (1999). Agricultural and Environmental Applications of Nitrogen Fixing Organisms. In: Martĺnez, E., Hernández, G. (eds) Highlights of Nitrogen Fixation Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4795-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4795-2_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7172-4

  • Online ISBN: 978-1-4615-4795-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics