Skip to main content

Enhancement of Autologous Tumor Vaccine Immunogenicity by Anti-Gal

  • Chapter
α-Gal and Anti-Gal

Part of the book series: Subcellular Biochemistry ((SCBI,volume 32))

Abstract

Anti-Gal is considered to be the most prevalent naturally occurring antibody common to all humans. It represents approximately 1 % of total IgG in the serum in humans and interacts specifically with the α-gal epitope of cell surface glycoproteins and glycolipids (see the chapter on “The Natural Anti-Gal Antibody” Galili, 1993; Galili et al., 1985; Galili et al., 1984). Understandably, the α-gal epitope is not expressed on tissues or cells derived from human sources since the enzyme synthesizing this epitope, the α 1,3 galactosyltransferase, is not active in humans (see the chapter on “Evolution of α 1,3 Galactosyltransferase and the α-Gal Epitope” Galili et al., 1988). But imagine the consequences of a human cell genetically or enzymatically engineered to express the α-gal epitope on its surface and then introduced into a normal individual. A prediction of the outcome lies in studies in xenotransplantation where non-primate mammalian tissues, which normally express the α-gal epitope, succumb to hyperacute immune rejection when trans- planted into a human recipient (see the chapter ofKobayashi and Cooper on “AntiGal in Xenotransplantation” Collins et al., 1994; Galili 1993b; Sandrin et al., 1993; Good et al., 1992). Anti-Gal thus forms an immunological barrier preventing xenotransplantation facilitated by binding to a-gal epitopes on the surface of the xenograft. Both IgM and IgG isotypes of anti-Gal bind the a-gal epitopes on the xenograft and destroy it through antibody mediated effector mechanisms such as antibody dependent cell cytotoxicity (ADCC) and complement fixation and lysis (Galili 1993b; Sandrin et al., 1993; Good et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asher A.L., Mule J.J., Kasid A., Restifo N.P., Salo J.C, Reichert C.M., Jaffe G., Fendly B, Kriegler M., and Rosenberg S.A., 1991, Murine tumor cells transduced with the gene for tumor necrosis factor alpha, J. Immunol. 146: 3227–3234.

    PubMed  CAS  Google Scholar 

  • Baskar S., Ostrand-Rosenberg S., Nabavi N., Nadler L., Freeman G., and Glimcher L., 1993, Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated MHC class II molecules, Proc. Natl. Acad. Sci. USA 90: 5687–5690.

    Article  PubMed  CAS  Google Scholar 

  • Boehm U., Klamp T., Groot M., and Howard J.C., 1997, Cellular responses to interferon-γ, Annu. Rev. Immunol. 15: 749–795.

    Article  PubMed  CAS  Google Scholar 

  • Boon T., Gajewski T.F., and Coule P.G., 1995, From defined human tumor antigens to effective immunization?, Immunol. Today 16: 334–336.

    Article  PubMed  CAS  Google Scholar 

  • Browning M.J., and Bodmer W.F., 1992, MHC antigens and cancer: implications for T-cell surveillance, Curr. Opinion Immunol. 4: 613–618.

    Article  CAS  Google Scholar 

  • Celis E., and Chang T. W., 1984, Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen, Science 224: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Celis E., Abraham K.G., and Miller R.W., 1987, Modulation of the immunological response to hepatitis B virus by antibodies, Hepatology 7: 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Chen L., Ashe S., Brady W.A., Hellstrom I., Hellstrom K.E., Ledbetter J.A., McGowan P., and Linsley P.S., 1992, Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4, Cell 71: 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Chen L., Chen D., Block E., O’Donnell M., Kufe D.W., and Clinton S.K., 1997, Eradication of murine bladder carcinoma by intratumor injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer, J. Immunol. 159:351–359.

    PubMed  CAS  Google Scholar 

  • Collins B.H., Cotterell A.H., McCurry K.R., Alvarado C.G., Magee J.C, Parker W., and Platt J.L., 1994, Cardiac xenografts between primate species provide evidence of the α-galactosyl determinant in hyperacute rejection, J. Immunol. 154: 5500–5510.

    Google Scholar 

  • Colombo M.P., Modesti A., Parmiani G., and Forni G., 1992, Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk, Cancer Res. 52: 4853–4857.

    PubMed  CAS  Google Scholar 

  • Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., and Mulligan R.C., 1993, Vaccination with irradiated tumor cells engineered to seCrete murine GM-CSF stimulates potent, specific, and long lasting anti-tumor immunity, Proc. Nail. Acad. Sci. USA 90: 3539–3543.

    Article  CAS  Google Scholar 

  • Falo L.D., Kovacsovics-Bankowski M., Thompson K., and Rock K.L., 1995, Targeting antigen into the phagocytic pathway in vivo induces protective tumor immunity, Nat. Med. 1: 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Fanger N.A., Wardwell K., Shen L., Tedder T.F., and Guyre P.M., 1996, Type I (CD64) and type II (CD32) Fc gamma receptor-mediated phagocytosis by human blood dendritic cells, J. Immunol. 157: 541–548.

    PubMed  CAS  Google Scholar 

  • Fearon E.R., Pardoll D.M., Itaya T., Golumbek P., Levitsky H.I., Simons J.W., Karasuyama H., Vogelstein B., and Frost P., 1990, Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response, Cell 60: 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Foley E.J., 1953, Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin, Cancer Res. 13: 835–837.

    PubMed  CAS  Google Scholar 

  • Galili U., Rachmilewitz E.A., Peleg A., and Flechner I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificity,J. Exp. Med. 160: 1519–1531.

    Article  PubMed  CAS  Google Scholar 

  • Galili U., Macher B.A., Buehler J., and Shohet S.B., 1985, Human natural anti-α-galactosyl IgG. II. The specific recognition of α-(1.3)-linked galactose residues, j. Exp. Med. 162: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Galili U., Shohet S.B., Kobrin E., Stults C.L.M., and Macher B.A., 1988, Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells, J. Biol. Chem. 263: 17755–17762.

    PubMed  CAS  Google Scholar 

  • Galili U., 1993a, Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody, Springer Semin. Immunopathol. 15: 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Galili U., 1993b, Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans, Immunol. Today 14: 480–482.

    Article  PubMed  CAS  Google Scholar 

  • Galili U., and LaTemple DC. 1997, Natural anti-Gal antibody as a universal augmenter of autologous tumor vaccine immunogenicity, Immunol. Today 18: 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., and Gilboa E., 1990, Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172: 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Golumbek P.T., Lazenby A.J., Levitsky H.I., Jaffee E.M., Karasuyama H., Baker M., and Pardoll D.M., 1991. Treatment of established renal cancer by rumor cells engineered to secrete interleukin-4, Science 254: 713–716.

    Article  PubMed  CAS  Google Scholar 

  • Good A.H., Cooper D.K.C., Malcolm A.J., Ippolito R.M., Koren E., Neethling FA., Ye Y., Zuhdi N., and Lamontagne L.R., 1992, Identification of carbohydrate structures which bind human anti-porcine antibodies: implications for discordant grafting in man, Transplant Proc. 24: 559–562.

    Google Scholar 

  • Gorelik, E., Duty, L., Anaraki F., and Galili, U. 1995. Alterations of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by l,3galactosyltransferase gene transfection. Cancer Res. 55:4168–4173

    PubMed  CAS  Google Scholar 

  • Gosselin E.J., Wardwell K., Gosselin D.R., Alter N., Fisher J.L., and Guyre P., 1992. Enhanced antigen presentation using human Fcγ receptor (monocyte/macrophgel-specific immunogens, J. Immunol. 149: 3477–3481.

    PubMed  CAS  Google Scholar 

  • Grabbe S., Beisserts S., Schwartz T., and Granstein R.D., 1995. Dendritic cells as initiators of tumor immune response: a possible strategy for tumor immunotherapy?. Immunol. Today 16: 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg P.D., 1991, Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells, Adv. Immunol. 49: 281–355.

    Article  PubMed  CAS  Google Scholar 

  • Guinan E.C., Gribben J.G., Boussiotis V.A., Freeman G.J., and Nadler L.M., 1994, Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84: 3261–3282.

    PubMed  CAS  Google Scholar 

  • Gutterman J.U., Hersh E.M., Rodriguez V., McCredie K.B., Mavligit G., Reed R., Burgess M.A., Smith T., Gehan E., Bodey G.P., and Freireich E.J., 1974, Chemoimmunotherapy of adult acute leukemia: prolongation of remission in myeloblastic leukemia with BCG, Lancet 2: 1405–1409.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom K.E., 1991, In Biologic Therapy of Cancer. J.B. Lippincott.

    Google Scholar 

  • Henion T.R., Macher B.A., Anaraki F., and Galili U., 1994, Defining the minmal size of catalytically active primate α1,3galactosyltransferase: structure function studies on the recombinant truncated enzyme, Glycobiology 4: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Herberman R.B., 1977, In Mechanisms of Tumor Immunity (Green I, Cohen S, McCluskey RT, eds.), pp. 175–191. J. Wiley and Son

    Google Scholar 

  • Herberman R.B., 1992, Tumor Immunology, JAMA 268: 2935–2939.

    Article  PubMed  CAS  Google Scholar 

  • Herin M., Lemoine C., Weynants P., Vesiere F., Van Pel A., Knuth A., Devos R., and Boon T., 1987, Production of stable cytolytic T-cell clones directed against autologous human melanoma, Intl J. Cancer 39:390–397.

    Article  CAS  Google Scholar 

  • Hollinshead A., Stewart T.H.M., Takita H., Dalbow M., and Concannon J., 1987, Adjuvant specific active lung cancer immunotherapy trials. Tumor-associated antigens, Cancer 60: 1249–1262.

    Article  PubMed  CAS  Google Scholar 

  • Hoover H.C., Surdyke M., Dangel R.B., Peters L.C., and Hanna M.G., 1984, Delayed cutaneous hypersensitivity to autologous tumor cells in colrectal cancer patients immunized with an autologous tumor cell Bacillus Calmette-Guerin vaccine, Cancer Res. 44: 1671–1676.

    PubMed  Google Scholar 

  • Houston W.E., Kremer R.J., Crabbs C.L., and Spertzel R.O., 1977, Inactivated Venezuelan equine encephalomyelitis virus vaccine complexed with specific antibody: enhanced primary immune response and altered pattern of antibody class elicited, J. Infect. Dis. 135: 600–610.

    Article  PubMed  CAS  Google Scholar 

  • Huang A. Y., Golumbek P., Ahmadzadeh M., Jaffee E., Pardoll D., and Levitsky H., 1994, Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens, Science 264: 961–965.

    Article  PubMed  CAS  Google Scholar 

  • Hui K., Grosveld F., and Festenstein H., 1984, Rejection of transplantable AKR leukaemic cells following MHC DNA-mediated cell transformation, Nature 311: 750–752.

    Article  PubMed  CAS  Google Scholar 

  • Kast W.M., Offringa R., Peters P.J., Voordouw A.C., Meloen R.H., Van der En A.J., and Melief C.M., 1989, Eradication of adenovirus E1-induced tumors by E1A specific cytotoxic T lymphocytes, Cell 59: 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Klein G., and Klein E., 1977, Rejectability of virus-induced tumors and non-rejectability of spontaneous tumors: a lesson in contrasts, Transplant Proc. 9: 1095–1104.

    PubMed  CAS  Google Scholar 

  • Klingemann H.G., and Dougherty G.J., 1996, Site-specific delivery of cytokines in cancer, Molec. Med. Today 2: 154–159.

    Article  CAS  Google Scholar 

  • Knuth A., Danowski B., Oettgen H.F., and Old L., 1984, T-cell mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin-2-dependent T-cell cultures, Proc. Natl. Acad. Sci. USA 81: 3511–3515.

    Article  PubMed  CAS  Google Scholar 

  • Knuth A., Wolfel T., Klehmann E., Boon T., and Meyer Zum Bueschenfelde K.H., 1989, Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection, Proc. Natl. Acad. Sci. USA 86: 2804–2808.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A., 1985, Antigen specific interactions between T and B cells, Nature 314: 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A., 1993, Identifying strategies for immune intervention, Science 260: 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A., 1996, Mechanisms of antigen uptake for presentation, Curr. Opin. Immunol. 8:348–354.

    Article  PubMed  CAS  Google Scholar 

  • LaTemple D.C., Henion T.R., Anaraki F., and Galili U., 1996, Synthesis of α-galactosyl epitopes by recombinant α 1,3galacotysltransferase for opsonization of human tumor cell vaccines by anti-galactose, Cancer Res. 56: 3069–3074.

    Google Scholar 

  • LaTemple D.C., and Galili U., 1998, Adult and neonatal anti-Gal response in knock-out mice for α 1,3 galactosyltransferase, Xenotransplantation 5: 191-196.

    Google Scholar 

  • Liu C., Gosselin E.J., and Guyre P.M., 1996, Fc gamma RII on human B cells can mediate enhanced antigen presentation, Cell. Immunol. 167: 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Lord E.M., and Frelinger J.G., 1998, Tumor immunotherapy: cytokines and antigen presentation, Cancer Immunol. Immunother. 46: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Maass G., Schmidt W., Berger M., Schilcher F., Koszik F., Schneeberger A., Stingl G., Birnstiel M.L., and Schweighoffer T., 1995, Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination, Proc. Natl. Acad. Sci. USA 92: 5540–5544.

    Article  PubMed  CAS  Google Scholar 

  • Mackay C.R., Marston W.L., and Dudler L., 1990. Naive and memory T cells show distinct pathways of lymphocyte recirculation, J. Exp. Med. 171: 801–817.

    Google Scholar 

  • Mackay C.R., Marston W., and Dudler L., 1992, Altered patterns of T cell migration through lymph nodes and skin following antigen challenge, Eur. J. Immunol. 22: 2205–2210.

    Article  PubMed  CAS  Google Scholar 

  • Manca F., Fenoglio D., LiPira G., Kunkl A., and Celada F., 1991. Effect of antigen/antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies, J. Exp. Med. 173: 37–48.

    Article  PubMed  CAS  Google Scholar 

  • McCune C.S., O’Donnell R.W., Marquis D.M., and Sahasrabudhe D.M., 1990, Renal cell carcinoma treated by vaccines for active specific immunotherapy: correlation of survival with skin testing by autologous tumor cells, Cancer Immunol. Immunother. 32: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison N.A., 1955, Studies on the immunological response to foreign tumor transplants in the mouse: I. The role of lymph node cells in conferring immunity by adoptive transfer, J. Exp. Med. 102: 157–177.

    Article  PubMed  CAS  Google Scholar 

  • Moller P., and Hammerling G., 1992. The role of surface HLA-A, B, C molecules in tumor immunity, Cancer Surv. 13: 101–128.

    PubMed  CAS  Google Scholar 

  • Nossal G.J.V., 1993, Tolerance and ways to break it, Ann. NY Acad. Sci. 690: 34–41.

    Article  PubMed  CAS  Google Scholar 

  • Old L.J., 1996, Immunotherapy for Cancer, Scientific American 275: 136–143.

    Article  PubMed  CAS  Google Scholar 

  • Pardoll D.M., 1993, Cancer vaccines, Immunol.Today. 14: 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Pardoll D.M., 1994, A new look for the 990s. Nature 369: 357–358.

    Article  PubMed  CAS  Google Scholar 

  • Powles R.L., Russel J., and Lister T. A., 1977, Immunotherapy of acute myelogenous leukemia: a controlled clinical study of 2.5 years after entry of the last patient, Br. J. Cancer. 35: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Prehn R.T., and Main J.M., 1957. Immunity to methylcholanthrene-induced sarcomas, j. Natl. Cancer Inst. 18: 769–778.

    PubMed  CAS  Google Scholar 

  • Restifo N.P., Spiess P.J., Karp S.E., Mule J.J., and Rosenberg S.A., 1992, A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma eleicits CD8+ T cells against the wild-type tumor: Correlation with antigen presentation capability, J. Exp. Med. 175: 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg S.A., Spiess P., and Lafreniere R., 1986, Anew approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes, Science 233: 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Roth C., Rochlitz C., and Kourilsky P., 1994, Immune response against tumors, Adv. Immunol. 57: 281–351.

    CAS  Google Scholar 

  • Sallusto F., and Lanzavecchia A., 1994, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colonly-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med. 179:1109–1118.

    Article  PubMed  CAS  Google Scholar 

  • Sandrin M., Vaughan H.A., Dabkowski P.L., and McKenzie I.F.C., 1993, Anti-pig IgM antibodies in human serum react predominantly with Gal(α1–3)Gal epitopes, Proc. Natl. Acad. Sci. USA 90: 11391–11395.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt D.A., Hanau D., Bieber T., Dezutter-Dambuyant C., Schmitt D., Fabre M., Pauly G., and Cazenave J.P., 1990, Human epidermal Langerhans cells express only the 40-kilodalton Fc gamma receptor (FcRII), J. Immunol. 144: 4284–4290.

    PubMed  CAS  Google Scholar 

  • Schrier P.I., and Peltenburg L.T.C., 1993, Relationship between myc oncogene activation and MHC class I expression, Adv. Cancer Res. 60: 181–246.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz R.H., 1990, A cell culture model for T lymphocyte clonal anergy, Science 248:1349–1356.

    Article  Google Scholar 

  • Schwarz R.H., 1992, Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy, Cell 71: 1065–1068.

    Article  Google Scholar 

  • Schweighoffer T., Schmidt W., Buschle M., and Birnstiel M.L., 1996, Depletion of naive T cells of the peripheral lymph nodes abrogates systemic antitumor protection conferred by IL-2 secreting cancer vaccines, Gene Therapy 3:819–824.

    PubMed  CAS  Google Scholar 

  • Stoner R.D., and Terres G., 1963, Enhanced antitoxin responses in irradiated mice elicited by complexes of tetanus toxoid and specific antibody, J. Immunol. 91: 761–770.

    PubMed  CAS  Google Scholar 

  • Sulitzeanu D., 1993, Immunosuppressive factors in human cancer, Adv. Cancer Res. 60: 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Sznol M., and Holmlund J., 1997, Antigen-specific agents in development, Seminars in Oncology 24: 173–186.

    PubMed  CAS  Google Scholar 

  • Thall A.D., Maly P., and Lowe J.B., 1995, Oocyte Galα 1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse, J. Biol. Chem. 270: 21437–21440.

    Article  PubMed  CAS  Google Scholar 

  • Thall A.D., Murphy H.S., and Lowe J.B., 1996, α1, 3galactosyltransferase-deficient mice produce naturally occurring cytotoxic anti-Gal antibodies, Transplant. Proc. 28: 556–557.

    PubMed  CAS  Google Scholar 

  • Townsend S.E., and Allison J.P., 1993, Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells, Science 259: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Unkeless J.C., 1989, Function and heterogeneity of human Fc receptors for immunoglobulin G, J. Clin. Invest. 83:355–361.

    Article  PubMed  CAS  Google Scholar 

  • Van den Eynde B., and Brichard V.G., 1995, New tumor antigens recognized by T cells, Current Opin. Immunol. 7: 674–681.

    Article  Google Scholar 

  • Vogler W., Bartolucci A.A., and Omura G.A., 1978, A randomized clinical trial of remission induction, consolidation, and chemoimmunotherapy maintenance in adult myeloblastic leukemia, Cancer Immunol. Immunother. 3: 163–170.

    Article  Google Scholar 

  • Wallich R., Bulbuc N., Hammerling G.J., Katzav S., Segal S., and Feldman M., 1985, Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection, Nature 315: 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Wang R.F., and Rosenberg S.A., 1996, Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J. Leukocyte Biology 60: 296–309.

    CAS  Google Scholar 

  • Zinkernagel R.M., Ehl S., Aichele P., Oechen S., Kundig T., and Hengartner H., 1997, Antigen localisation regulates immune responses in a dose-and time-dependent fashion: a geographical view of immune reactivity, Immunological Reviews 156: 199–209.

    Article  PubMed  CAS  Google Scholar 

  • Zuhrie S.R., Harris R., and Freeman C.B., 1980, Immunotherapy alone vs. no maintenance treatment in acute myelogenous leukemia, Br. J. Cancer 41: 372–337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

LaTemple, D.C., Galili, U. (1999). Enhancement of Autologous Tumor Vaccine Immunogenicity by Anti-Gal. In: Galili, U., Avila, J.L. (eds) α-Gal and Anti-Gal. Subcellular Biochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4771-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4771-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7160-1

  • Online ISBN: 978-1-4615-4771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics