Skip to main content

Production of Aromatic Amino Acid Derivatives through Metabolic Engineering of Crop Plants

  • Chapter

Summary

A large number of plant products of commercial value including essential amino acids, alkaloids, phenols and structural compounds are derived from the shikimate pathway, but it is poorly understood what control architectures are required to produce these compounds. The creation of transgenic plants with artificial metabolic sinks that produce shikimate derived end-products or which effectively down-regulate the production of others has been successfully used in our laboratory to eliminate tryptophan-derived indoleglucosinolates inBrassica napus(canola). The elimination of indoleglucosinolates in canola seeds would be useful since this could increase the palatability of canola protein meals which are used for feeding swine and poultry. We have also shown that important effects on aromatic amino acid levels are observed when artificial metabolic sinks for tryptophan are introduced into transgenic plants. Transgenic potatoes which express tryptophan decarboxylase accumulate significantly lower levels of tryptophan and these plants were used to evaluate if tryptophan might play a role in the regulation of the shikimate pathway. Tubers from trans-genic potatoes also accumulated significantly decreased levels of phenylalanine, accumulated reduced levels of soluble and wall-bound phenolic compounds after wounding and were significantly more susceptible to infection byPhytopthora infestansa major fungal pathogen of potato. The significance of these results will be discussed in relation to the evolution of control architectures in microorganisms, fungi and plants which may regulate the shikimate pathway and which may result in different adaptive responses observed in plants when they accommodate a new artificial metabolic sink.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altanassova, R.; Favet, N.; Martz, F.; Chabbert, B.; Tollier, M. T.; Monties, B.; Fritig, B.; Legrand, M. Altered lignin composition in transgenic tobacco expressing 0-methyltransferase sequences in sense and antisense orientation. The Plant Journal 1995, 8, 465–477.

    Article  Google Scholar 

  • Bailey, J.E. Toward a science of metabolic engineering. Science 1991, 253, 1668–1675.

    Article  Google Scholar 

  • Bate, N. J.; Orr, J.; Ni, W.; Meromi, A.; Nadler-Hassar, T.; Doemer, P. W.; Dixon, R. A.; Lamb, C. J.; Elkind, Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 1994, 91, 7608–7612.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, R. The shikimate pathway-a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 1990, 25, 307–384.

    Article  PubMed  CAS  Google Scholar 

  • Berlin, J.; Rugenhagen, C.; Dietze, R; Fecker, L. F.; Goddijn, O. J. M.; Hoge, H. C. Increased production of serotonin by suspension cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA clone from Catharanthus roseus. Transgenic Research 1993, 2, 336–344.

    Article  CAS  Google Scholar 

  • Carsiotis, M.; Jones, R. F.; Wesseling, A. C. Cross-pathway regulation: histidine-mediated control of enzymes of histidine, tryptophan, and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 1974, 119, 893–898.

    PubMed  CAS  Google Scholar 

  • Chappell, C. C.; Vogt, T.; Ellis, B. E.; Somerville, C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 1992, 4, 1413–1424.

    Google Scholar 

  • Chappell, C. C. A cDNA encoding a novel cytochrome P450-dependent monooxygenase from Arabidopsis thaliana. Plant Physiol. 1995, 108, 875–876.

    Article  Google Scholar 

  • Chavadej, S.; Brisson, N.; McNeil, J. N.; De Luca, V. Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2166–2170.

    Article  PubMed  CAS  Google Scholar 

  • Demain A. L. Breaking through the gridlock on the aromatic thruway (to lower cost specialty chemicals), Nature Biotechnology 1996, 14, 582–583.

    Article  Google Scholar 

  • De Luca, V.; Marineau, C.; Brisson, N. Molecular cloning and analysis of cDNA encoding a plant tryptophan de-carboxylase: comparison with animal dopa decarboxylases. Proc. Natl. Acad. Sci. USA 1989, 86, 2582–2586.

    Article  PubMed  Google Scholar 

  • De Luca, V. Molecular characterization of secondary metabolic pathways. AgBiotech. News and Information 1993, 5,225N–229N.

    Google Scholar 

  • Dixon, R. A.; Paiva, N. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097.

    PubMed  CAS  Google Scholar 

  • Douglas, C. J. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends in Plant Sciences 1996, 1, 171–178.

    Article  Google Scholar 

  • Eberhard, J.; Ehrler, T. T.; Epple, P.; Felix, G.; Raesecke, H. R.; Amrhein, N.; Schmid, J. Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant Journal 1996, 10, 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Flores, N.; Xiao, J.; Berry, A.; Bolivar, F.; Valle, F. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechnology 1996, 14, 620–623.

    Article  CAS  Google Scholar 

  • Goddijn, O. J. M.; Pen, J. Plants as Bioreactors. Trends in Biotechnology 1995, 13, 379–387.

    Article  CAS  Google Scholar 

  • Grand, C.; Parmentier, P.; Boudet, A.; Boudet, A. M. Comparison of lignins and of enzymes involved in lignification in normal and brown midrib mutant maize seedlings. Physiol. Veg. 1985, 23, 905–911.

    CAS  Google Scholar 

  • Guyer, D.; Patton, D.; Ward, D. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 4997–5000.

    Article  PubMed  CAS  Google Scholar 

  • Halpin, C.; Knight, M. E.; Foxon, G. A.; Campbell, M. M.; Boudet, A. M.; Boon, J. J.; Chabbert, B.; Tollier, M. T.; Schuch, W. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. The Plant Journal 1994, 6, 339–350.

    Article  CAS  Google Scholar 

  • Hibi, N.; Higashiguchi, S.; Hashimoto, T.; Yamada, Y. Gene expression in tobacco low-nicotine mutants. Plant Cell 1994, 6, 723–735.

    PubMed  CAS  Google Scholar 

  • Holton, T. A; Cornish, E. C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995, 7, 1071–1083.

    PubMed  CAS  Google Scholar 

  • Jensen, R. The shikimate/aerogenate pathway: link between carbohydrate metabolism and secondary metabolism. Physiol. Plantarum 1986, 66, 164–168.

    Article  CAS  Google Scholar 

  • Katsumata, R.; Ikeda, M. Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Bio/Technology 1993, 11, 921–925.

    Article  CAS  Google Scholar 

  • Kutchan, T. Alkaloid biosynthesis-the basis for metabolic engineering of medicinal plants. Plant Cell 1995, 7, 1069–1070.

    Google Scholar 

  • Margna, U. Control at the level of substrate supply-an alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 1977, 16, 419–426.

    Article  CAS  Google Scholar 

  • McGarvey, D. J.; Croteau, R. Terpenoid metabolism. Plant Cell 1995, 7,1015–1026.

    PubMed  CAS  Google Scholar 

  • Nessler, C. L. Metabolic engineering of plant secondary products, Transgenic Research 1994, 3, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Niederberger, P.; Miozzari, G.; Hutter, R. Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology 1981, 1, 584–593.

    PubMed  CAS  Google Scholar 

  • Schmidt, J.; Amrhein, N. Molecular organization of the shikimate pathway in higher plants. Phytochemistry 1995, 39,737–749.

    Article  Google Scholar 

  • Vignols, F.; Rigau, J.; Torres, M. A.; Cappellades, M.; Puigdomènich, P. The brown midrib3 (bm3) mutant in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 1995, 7, 407–416.

    PubMed  CAS  Google Scholar 

  • Weiting, N.; Paiva, N.; Dixon, R. A. Reduced lignin in transgenic plants containing a caffeic acid 0-methyltransferase antisense gene. Transgenic Research 1994, 3, 120–126.

    Article  Google Scholar 

  • Whetten, R.; Sederoff, R. Lignin biosynthesis. Plant Cell 1995, 7, 1001–1013.

    PubMed  CAS  Google Scholar 

  • Yao, K.; De Luca, V.; Brisson, N. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytopthora infestans. Plant Cell 1995, 7, 1787–1799.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Luca, V. (1999). Production of Aromatic Amino Acid Derivatives through Metabolic Engineering of Crop Plants. In: Fu, TJ., Singh, G., Curtis, W.R. (eds) Plant Cell and Tissue Culture for the Production of Food Ingredients. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4753-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4753-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7155-7

  • Online ISBN: 978-1-4615-4753-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics