Skip to main content

Basin-Scale Groundwater Flow and Advective Heat Flow: An Example from the Northern Great Plains

  • Chapter
Geothermics in Basin Analysis

Part of the book series: Computer Applications in the Earth Sciences ((CAES))

Abstract

Gravity-driven groundwater flow in a confined aquifer system that extends several hundred kilometers eastward from the Black Hills causes anomalous surface heat-flow over an 80,000 km2 area in southern South Dakota and northern Nebraska. Data from 16 new heat- flow holes, existing heat-flow data, and heat-flow values calculated from BHT data show a systematic variation in heat-flow from 20 mW m−2 in the recharge zone to 140 mW m−2 in the discharge zone. Ninety-four conventional heat-flow values and 62 heat-flow values calculated from BHT data yield an average heat-flow of 58 ± 9 mW m−2 for the northern Great Plains exclusive of the anomalous area. The advective heat-flow system is unusual in that temperature gradients in boreholes ranging from 2000 meters deep near the Black Hills to 500 meters deep in central South Dakota show only conductive heat-flow. In effect, the advective system is masked by 500 to 2000 meters of low permeability marine shales that overlie a 600- meter thick confined aquifer system. Numerical models of coupled groundwater heat-flow in the aquifer system suggest that confined water flow at Darcy velocities of 3.17 × 10−8m s−1 to 6.34 × 10−8m s−1 (1 to 2 m y−1)) causes the anomalous heat-flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolphson, D. G., and F. LeRoux, E. F., 1968, Temperature variations of deep flowing wells in South Dakota: U.S. Geol. Survey Prof. Paper 600-D, p. 60–62.

    Google Scholar 

  • Bachu, S, and Hitchon, B., 1996, Regional-scale flow of formation waters in the Williston Basin: Am. Assoc. Petroleum Geologists Bull. 80, no. 2, p. 248–264.

    Google Scholar 

  • Blackwell, D. D., 1971, The thermal structure of the continental crust, in Heacock, J. G., ed., The Structure and Physical Properties of the Earth’s Crust: Am. Geophys. Union, Geophys. Mon. Ser., v. 14, p. 169–184.

    Google Scholar 

  • Blackwell, D.D., and Steele, J.A., 1989, Heat flow and geothermal potential of Kansas: Kansas Geol. Survey Bull. 226, p. 267–295.

    Google Scholar 

  • Bredehoeft, J. D., Neuzil, C. E., and Milley, P. C. D., 1983, Regional flow in the Dakota aquifer: a study of the role of confining layers: U. S. Geol. Survey Water Supply Paper 2237, 45 p.

    Google Scholar 

  • Brott, C. A., Blackwell, D. D., and Mitchell, J., 1978, Tectonic implications of heat flow in the western Snake River Plain, Idaho: Geol. Soc. America Bull., v. 89, no. 12, p. 1697–1707.

    Article  Google Scholar 

  • Brott, C. A., Blackwell, D. D., and Ziagos, J. P., 1981, Thermal and tectonic implications of heat flow in the eastern Snake River Plain, Idaho: Jour. Geophys. Res., v. B86, no. 12, p. 11,709–11,734.

    Article  Google Scholar 

  • Combs, J., and Simmons, G., 1973, Terrestrial heat flow determinations in the north central United States: Jour. Geophys. Res., v. 78, no. 2, p. 441–461.

    Article  Google Scholar 

  • Deming, D., Sass, J. H., Lachenbruch, A. H., and De Rito, R. F., 1992, Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska: Geol. Soc. America Bull., v. 104, no. 5, p. 528–542.

    Article  Google Scholar 

  • Domenico A., and Palciauskas, S., 1973, Theoretical analysis of forced convective heat transfer in regional ground-water flow: Geol. Soc. America Bull., v. 84, no. 12, p. 3803–3814.

    Article  Google Scholar 

  • Donaldson, I. G., 1962, Temperature gradients in the upper layers of the earth’s crust due to convective water flows: Jour. Geophys. Res., v. 67, no. 9, p. 3449–3459.

    Article  Google Scholar 

  • Downey, J.S., 1986, Geohydrology of bedrock aquifers in the northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming: U.S. Geol. Survey Prof. Paper 1402-E, 87 p.

    Google Scholar 

  • Gill, G. R., and Cobban, W.A., 1965, Stratigraphy of the Pierre Shale, Valley City and Pembina Mountain areas, North Dakota: U. S. Geol. Survey Prof. Paper, 392-A, p. 1–20.

    Google Scholar 

  • Gosnold, W.D., Jr., 1985, Heat flow and groundwater flow in the Great Plains of the United States: Jour. Geodynamics, v. 4, no. 1-4, p. 247–264.

    Article  Google Scholar 

  • Gosnold, W.D., Jr., 1990, Heat Flow in the Great Plains of the United States: Jour. Geophys. Res., v. B95, no. 1, p. 353–374.

    Article  Google Scholar 

  • Gosnold, W.D., Jr., 1991, Subsurface temperatures in the northern Great Plains, in Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D., eds, Neotectonics of North America: Geol. Soc. America, Decade Map Volume 1, p. 467–472.

    Google Scholar 

  • Gosnold, W.D., Jr., and Todhunter, P. E., 1994, Analysis of the geothermal gradient as a method of paleoclimate reconstruction (abst.): EOS, v. 75, no. 44, Suppl., p. 96.

    Google Scholar 

  • Gosnold, W.D., Jr., Todhunter, P. E., and Schmidt, W., 1997, The borehole temperature record of climate warming in the mid-continent of North America: Global and Planetary Change, v. 15, no. 1-2, p. 33–45.

    Article  Google Scholar 

  • Head, W. J., Kilty, K. T., and Knottek, R. K., 1978, Maps showing temperatures and configurations of the tops of the Minnelusa Formation and the Madison Limestone, Powder River Basin, Wyoming, Montana, and adjacent areas: U. S. Geol. Survey Open-File Rept. 78-905, 2 sheets.

    Google Scholar 

  • Hildenbrand, T. G., and Kucks, R. P., 1985, Model of the geothermal system in southwestern South Dakota from gravity and aeromagnetic studies, in Hinze, W. J., ed., The Utility of Regional Gravity and Magnetic Anomaly Maps: Soc. Expl. Geophys., p. 258–266.

    Google Scholar 

  • Jessop, A. M., 1991, Hydrological distortion of heat flow in sedimentary basins: Tectonophysics, v. 164, no. 2-4, p. 211–218.

    Article  Google Scholar 

  • Lachenbrach, A.H., and Sass, J. H., 1977, Heat flow in the United States and the thermal regime of the crust, in Heacock, J. G., ed., The Earth’s Crust: Am. Geophys. Union Mon. Ser. 20, p. 626–675.

    Google Scholar 

  • Majorowicz, J. A., Jones, F. W., and Jessop, A. M., 1986, Geothermics of the Williston Basin in Canada in relation to hydrodynamics and hydrocarbon occurrences: Geophysics, v. 51, no. 3, p. 767–779.

    Article  Google Scholar 

  • Neuzil, C.E., 1993, Low fluid pressure within the Pierre Shale: a transient response to erosion: Water Resources Res., v. 29, no. 7, p. 2007–2020.

    Article  Google Scholar 

  • Neuzil, C.E., 1995, Abnormal pressures as hydrodynamic phenomena: Amer. Jour. Sci., v. 295, no. 6, p. 742–786.

    Article  Google Scholar 

  • Neuzil, C. E., Bredehoeft, J. D., and Wolff, R. G., 1984, Leakage and fracture permeability in the Cretaceous shales confining the Dakota aquifer in South Dakota, in Jorgensen, D. G., and Signor, D. G, eds., Geohydrology of the Dakota Aquifer: Nat. Water Well Assoc., Worthington, OH, p. 113–120.

    Google Scholar 

  • Rahn, P. H., 1985, Groundwater stored in the rocks of western South Dakota, in Rich, F. J., ed., Geology of the Black Hills of South Dakota and Wyoming (2nd ed.): Am. Geol. Inst., p. 154–174.

    Google Scholar 

  • Roy, R. F., Blackwell, D. D., and Decker, E. R., 1972, Continental heat flow, in Robinson, E. C., ed., The Nature of the Solid Earth: McGraw-Hill Book Co., New York, p. 506–543.

    Google Scholar 

  • Sass, J. H., and Galanis, S. P., 1983, Temperatures, thermal conductivity and heat flow from a well in Pierre Shale near Hayes, South Dakota: U.S. Geol. Survey Open-File Rept. 83-25, 10 p.

    Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses, Jr., T. H., 1971, Heat flow in the western United States: Jour. Geophys. Res., v. 81, no. 76, p. 6376–6414.

    Article  Google Scholar 

  • Schoon, R. A., Geology and hydrology of the Dakota Formation in South Dakota: South Dakota Geol. Survey, Rept. of Invest. 104, 55 p.

    Google Scholar 

  • Schoon, R. A., and McGregor, D. J., 1974, Geothermal potentials in South Dakota: South Dakota Geol. Survey, Rept. of Invest. 110, 76 p.

    Google Scholar 

  • Schultz, L. G., 1964, Quantitative interpretation and mineralogical composition from X-ray and chemical data for the Pierre Shale: U.S. Geol. Survey Prof. Paper 391-C, 31 p.

    Google Scholar 

  • Schultz, L. G., 1965, Mineralogy and stratigraphy of the lower part of the Pierre Shale, South Dakota and Nebraska: U.S. Geol. Survey Prof. Paper 392-B, p. B1–B19.

    Google Scholar 

  • Smith, L., and Chapman, D. S., 1983, On the thermal effects of groundwater flow: Jour. Geophys. Res., v. B88, no. 1, p. 593–608.

    Article  Google Scholar 

  • Swenson, F. A., 1968, New theroy of recharge in the artesian basin of the Dakotas: Geol. Soc. America Bull., v. 79, no. 2, p. 163–182.

    Article  Google Scholar 

  • Stallman, R. W., 1963, Computation of groundwater velocity from temperature data: U.S. Geol. Survey Water Supply Paper 1554-H, p. 36–46.

    Google Scholar 

  • Tourtelot, H. A., 1962, Preliminary investigation of the geologic setting and chemical composition of the Pierre Shale, Great Plains region: U.S. Geol. Survey Prof. Paper 390, 74 p.

    Google Scholar 

Other References

  • Bachu, S., and Hitchon, B., 1996, Regional-scale flow of formation waters in the Williston Basin: Am. Assoc. Petroleum Geologists Bull., v. 80, no. 2, p. 248–264.

    Google Scholar 

  • Blackwell, D. D., 1971, The thermal structure of the continental crust, in Heacock, J. G., ed., The Structure and Physical Properties of the Earth’s Crust: Am. Geophys. Union, Geophys. Mon. Ser., v. 14, p. 169–184.

    Google Scholar 

  • Combs, J., and Simmons, G., 1973, Terrestrial heat flow determinations in the north central united States: Jour. Geophys. Res., v. 78, no. 2, p. 441–461.

    Article  Google Scholar 

  • Deming, D., Sass, J. H., Lachenbruch, A. H., and De Rito, R. F., 1992, Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska: Geol. Soc. America Bull., v. 104, no. 5, p. 528–542.

    Article  Google Scholar 

  • Donaldson, I. G., 1962, Temperature gradients in the upper layers of the earth’s crust due to convective water flows: Jour. Geophys. Res., v. 67, no. 9, p. 3449–3459.

    Article  Google Scholar 

  • Head, W. J., Kilty, K. T., and Knottek, R. K., 1978, Maps showing temperatures and configurations of the tops of the Minnelusa Formation and the Madison Limestone, Powder River Basin, Wyoming, Montana, and adjacent areas: U. S. Geol. Survey Open-File Rept. 78-905, 2 sheets.

    Google Scholar 

  • Hildenbrand, T. G., and Kucks, R. P., 1985, Model of the geothermal system in southwestern South Dakota from gravity and aeromagnetic studies, in Hinze, W. J., ed., The Utility of Regional Gravity and Magnetic Anomaly Maps: Soc. Expl. Geophys., p. 258–266.

    Google Scholar 

  • Lachenbruch, A. H., and Sass, J. H., 1977, Heat flow in the United States and the thermal regime of the crust, in Heacock, J. G., ed., The Earth’s Crust: Am. Geophys. Union Mon. Ser. 20, p. 626–675.

    Google Scholar 

  • Majorowicz, J. A., Jones, F. W., and Jessop, A. M., 1986, Geothermics of the Williston Basin in Canada in relation to hydrodynamics and hydrocarbon occurrences: Geophysics, v. 51, no. 3, p. 767–779.

    Article  Google Scholar 

  • Smith, L., and Chapman, D. S., 1983, On the thermal effects of groundwater flow: Jour. Geophys. Res., v. B88, no. 1, p. 593–608.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gosnold, W.D. (1999). Basin-Scale Groundwater Flow and Advective Heat Flow: An Example from the Northern Great Plains. In: Förster, A., Merriam, D.F. (eds) Geothermics in Basin Analysis. Computer Applications in the Earth Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4751-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4751-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7154-0

  • Online ISBN: 978-1-4615-4751-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics