Skip to main content

High-Resolution Temperature Logs in a Petroleum Setting: Examples and Applications

  • Chapter
Geothermics in Basin Analysis

Abstract

Examples of high-resolution temperature logs measured in oil and gas fields in the United States are presented and the pertinent features useful in basin analysis are discussed. We point out that wells suitable for equilibrium or near equilibrium temperature logs usually are available, and we describe by examples criteria for the evaluation of the quality of a high- resolution temperature log. Examples of temperature gradient logs from two fields in the Paleozoic-age Anadarko Basin in Oklahoma, one field in the Cenozoic Gulf Coast Basin, and one field in the Mesozoic/Cenozoic Sacramento Basin in northern California are described and their application to the analysis of basin thermal structure discussed. The major criteria that can be used to evaluate the quality of the log are level of (temperature) noise, presence/absence of negative/zero gradient sections, degree of correlation with other geophysical logs, and well to well comparisons. Even logs that are not in complete equilibrium contain significant information compared to a typical set of BHT points. The development of memory P/T tools and their deployment in the field for production logging indicates that the potential now exists for routine collection of high-resolution temperature data in hydrocarbon settings worldwide. Because the thermal regime of many boreholes in producing fields may be closer to equilibrium than has been thought in the past, the new temperature capability can be used in a practical way. High-resolution logs can furnish detailed information on the gradient, the ratios of the thermal conductivity values in hard-to-sample lithologies to those in lithologies easier to characterize, and ultimately more precise understanding of the thermal regime (whether conductive, convective, etc.) in individual wells and sedimentary basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auld, M.J., 1948, Temperature gradients for convection in well models: Jour. Applied Physics, v. 19, no. 2, p. 218.

    Google Scholar 

  • Blackwell, D. D., 1971, The thermal structure of the continental crust, in Heacock, J. G., ed., The Structure and Physical Properties of the Earth’s Crust: Am. Geophys. Union Mon. 14, p. 169–184.

    Google Scholar 

  • Blackwell, D.D., and Spafford, R.E., 1987, Experimental methods in continental heat flow, in Sammis, C.G., and Henyey, T.L., eds., Methods of Experimental Physics: Geophysics, v. 24(B), Academic Press, New York, p. 189–226.

    Google Scholar 

  • Blackwell, D.D., and Steele, J.L., 1989a, Thermal conductivity of sedimentary rocks: measurement and significance, in Naeser, N.D., and McColloh, T.H., eds., Thermal History of Sedimentary Basins: Springer-Verlag, New York, p.13–36.

    Chapter  Google Scholar 

  • Blackwell, D.D., and Steele, J.L., 1989b, Heat flow and geothermal potential of Kansas: Kansas Geol. Survey Bull. 226, p. 267–295.

    Google Scholar 

  • Blackwell, D. D., Murphey, C. F., and Steele, J. L., 1982, Heat flow and geophysical log analysis for OMF-7A geothermal test well, Mount Hood, Oregon, in Priest, G.R., and Vogt, B.F., eds., Geology and Geothermal Resources of the Mount Hood Area, Oregon: Oregon Dept. Geol. Mineral Indust. Spec. Paper. 14, p. 47–56.

    Google Scholar 

  • Blanchard, P. E., and Sharp, Jr., J. M., 1985, Possible free convection in thick Gulf Coast sandstone sequences: Am. Assoc. Petroleum Geologists, South West Section Trans, p. 6–12.

    Google Scholar 

  • Bodner, D. P., and Sharp, J. M., Jr., 1988, Temperature variations in the South Texas subsurface: Am. Assoc. Petroleum Geologists Bull., v. 72, no. 1, p. 21–32.

    Google Scholar 

  • Brigaud, F. G., Chapman, D. S., and Le Douaran, S., 1990, Thermal conductivity in sedimentary basins predicted from lithologic data and geophysical logs: Am. Assoc. Petroleum Geologists Bull., v. 74, no. 9, p. 1459–1477.

    Google Scholar 

  • Bristow, Q., and Conaway, J. G., 1984, Temperature gradient measurements in boreholes using low noise high resolution techniques: Geol. Survey Canada Current Research, Pt. B, Paper 84-1B, p. 101–108.

    Google Scholar 

  • Carter, L.S., Kelley, S.A., Blackwell, D.D., and Naeser, N.D., 1998, Heat flow and thermal history of the Anadarko Basin, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 82, no. 2, p. 291–316.

    Google Scholar 

  • Connan, J., 1974, Time-temperature relation in oil genesis: Am. Assoc. Petroleum Geologists Bull., v. 58, no. 12, p. 2516–2521.

    Google Scholar 

  • Deming, D., Sass, J. H., Lachenbruch, and R. F. De Rito, 1992, Heat flow and subsurface temperature as evidence for basin scale groundwater flow, North Slope of Alaska: Geol. Soc. America Bull, v. 104, no. 5, p. 528–542.

    Article  Google Scholar 

  • Demongodin, L., Pinoteau, B., Vasseur, G., and Gable, R., 1991, Thermal conductivity and well logs: a case study in the Paris basin: Geophysical Jour., v. 105, no. 3, p. 675–691.

    Article  Google Scholar 

  • Diment, W.H., 1967, Thermal regime of a large diameter borehole: instability of the water column and comparison of air-and water-filled conditions: Geophysics, v. 32, no. 4, p. 720–726.

    Article  Google Scholar 

  • Diment, W. H., and Urban, T. C., 1982, Temperature changes with time in the slotted interval of a deep, shut-in geothermal well near thermal equilibrium: East Mesa well 31-1, Imperial Valley, California, 1977-1982: Geothermal Resources Council Trans., v. 6, p. 249–252.

    Google Scholar 

  • De Rito, R. F., Lachenbruch, A. H., Moses, T. H., Jr., and Munroe, R. J., 1989, Heat flow and thermotectonic problems of the central Ventura basin, southern California: Jour. Geophys. Res., v. 94, no. B1, p. 681–699.

    Article  Google Scholar 

  • Förster, A., Merriam, D. F., and Davis, J. C., 1998, Spatial analysis of temperature (BHT/DST) data and consequences for heat-flow determination in sedimentary basins: Geol. Rundschau, v. 86, no. 2, p. 252–261.

    Google Scholar 

  • Förster, A., Schrotter, J., Merriam, D. F., and Blackwell, D. D., 1997, Application of optical-fiber temperature logging—an example in a sedimentary environment: Geophysics, v. 62, no. 4, p. 1107–1113.

    Article  Google Scholar 

  • Funnell, R., Chapman, D.S., Allis, R., and Armstrong, P., 1996, Thermal state of the Taranaki Basin, New Zealand: Jour. Geophys. Res., v. B101, no. 11, p. 25,197–25,215.

    Article  Google Scholar 

  • Gallardo, J.D., and Blackwell, D. D., 1999, Thermal model of the Anadarko Basin, Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 83, no. 2, in press.

    Google Scholar 

  • Galloway, W. E., and Cheng, E. S., 1985, Reservior facies architecture in a microtidal barrier system-Frio formation, Texas Gulf Coast: Texas Bur. Econ. Geol. Rept. Invest. No. 144, 36 p.

    Google Scholar 

  • Gosnold, W. D., Jr., 1990, Heat flow in the Great Plains of the United States: Jour. Geophys. Res., v. B95, no. 1, p. 353–374.

    Article  Google Scholar 

  • Gretener, P.E., 1967, On the thermal instability of large diameter well—an observational report: Geophysics, v. 32, no. 4, p. 727–738.

    Article  Google Scholar 

  • Gretener, P. E., 1981, Using temperature in hydrocarbon exploration: Am. Assoc. Petroleum Geologists, Education Course Note Series No. 17, 170 p.

    Google Scholar 

  • Griffiths, C. M., Brereton, N. R., Beausillon, R., and Castillo, D., 1992, Thermal conductivity prediction from petrophysical data: a case study, in Hurst, A., Griffiths, CM., and Worthington, P.F., eds., Geological Applications of Wireline Logs II: Geol. Soc. Spec. Publ. No. 65, p. 299–315.

    Google Scholar 

  • Groβwig, S., Hurtig, E., and Kühn, K., 1996, Fibre optic temperature sensing: a new tool for temperature measurements in boreholes: Geophysics, v. 61, no. 4, p. 1065–1067.

    Article  Google Scholar 

  • Hales, A.L., 1937, Convection currents in geysers: Monthly Notices Roy. Astr. Soc., Geophysics Suppl., v. 4, p. 122–131.

    Article  Google Scholar 

  • Houbolt, J. J. H. G, and Wells, P.R.A., 1980, Estimation of heat flow in oil wells based on a relation between heat conductivity and sound velocity: Geologie en Minjnbouw, v. 59, no. 3, p. 215–224.

    Google Scholar 

  • Jaeger, J. C., 1961, The effect of drilling fluid on temperatures measured in boreholes: Jour. Geophys. Res., v. 66, no. 2, p. 563–569.

    Article  Google Scholar 

  • Jeffreys, H., 1937, Notes on Mr. Hales’s paper: Monthly Notices Roy. Astr. Soc., Geophysics Suppl., v. 4, p. 131.

    Article  Google Scholar 

  • Jessop, A. M., 1990, Comparison of industrial and high resolution thermal data in a sedimentary basin: Pageoph., v. 133, no. 2, p. 251–267.

    Article  Google Scholar 

  • Johnson, K. S., Amsden, T. W, Denison, R. E., Durton, S. P., Goldstein, A. G., Rascoe, B., Jr., Sutherland, P. K., and Thompson, D. M., 1988, Southern mid-continent region, in Sloss, L. L., ed., Sedimentary Cover-North American Craton, U. S.: Geol. Soc. America, The Geology of North America, D-2, p. 307–359.

    Google Scholar 

  • Larimore, D. R., Goiggon, J. J., and Bayhn, R.I., III, 1997, Low-cost solutions for well interventions through advanced slickline service: SPE 35236, 1996, quoted in Jour. Petrol. Tech., 118–122.

    Google Scholar 

  • Lee, Y., Deming, D., and Chen, K. F., 1996, Heat flow and heat production in the Arkoma basin and Oklahoma platform, southeastern Oklahoma: Jour. Geophys. Res., v. B101, no.11, p. 25,387-25,401.

    Google Scholar 

  • Majorowitz, J. A., Jessop, A. M., Jessop, C., and Deuma, M., 1998, Heat flow and subsurface temperature along a SW-NE profile across the Western Canada Sedimentary Basin, this volume.

    Google Scholar 

  • McGee, H. W., Meyer, H. J., and Pringle, T. R., 1989, Shallow geothermal anomalies overlying deeper oil and gas deposits in the Rocky Mountain region: Am. Assoc. Petroleum Geologists Bull., v. 73, no. 5, p. 576–597.

    Google Scholar 

  • McKenna, T.E., Sharp, J. M., Jr., and Lynch, F. L., 1996, Thermal conductivity of Wilcox and Frio sandstones in south Texas (Gulf of Mexico basin): Am. Assoc. Petroleum Geologists Bull., v. 80, no. 8, p. 1203–1215.

    Google Scholar 

  • Nielsen, S. B., and N. Balling, 1984, Accuracy and resolution in continuous temperature logging: Tectonophysics, v. 103, no. 1, p. 1–10.

    Article  Google Scholar 

  • Ponzini, G., Crosta, G., and Guidici, M., 1989, Identification of thermal conductivities by temperature gradient profiles: one-dimensional steady flow: Geophysics, v. 54, no. 5, p. 643–653.

    Article  Google Scholar 

  • Ramey, H. J., 1962, Wellbore heat transmission: Jour. Petrol. Tech., v. 14, no. 4, p. 427–435.

    Google Scholar 

  • Robertson, E.C., 1988, Thermal properties of rocks: U.S. Geol. Survey Open-file Rept. 88-441, 106 p.

    Google Scholar 

  • Ross, E.W., Vagelatos, N., Dickerson, J.M., and Nguyen, V., 1982, Nuclear logging and geothermal log interpretation: formation temperature sonde evaluation, in Hallenburg, J.K., ed., Geothermal log interpretation handbook: Soc. Prof. Well Log Analysts, Tulsa, Oklahoma, p. V7-V52.

    Google Scholar 

  • Sakaguchi, K., and Matsushima, N., 1995, Temperature profile monitoring in geothermal wells by distributed temperature sensing technique: Geothermal Resource Council Trans., v. 19, p. 355–358.

    Google Scholar 

  • Saltus, R.W., and Lachenbruch, A.H., 1991, Thermal evolution of the Sierra Nevada: tectonic implications of new heat flow data: Tectonics, v. 10, no.2, p. 10,325–10,344.

    Article  Google Scholar 

  • Sammel, E. A., 1968, Convective flow and its effect in temperature logging in small diameter wells: Geophysics, v. 33, no. 6, p. 1004–1012.

    Article  Google Scholar 

  • Williams, C. F., Galanis, S. P., Jr., F. V. Grubb, and T. H. Moses, Jr., 1994, The thermal regime of Santa Maria Province, California: U. S. Geol. Survey Bull. 1995, Chapt. F, 25 p.

    Google Scholar 

  • Wisian, K.W., Blackwell, D.D., Bellani, S., Henfling, J.A., Normann, R.A., Lysne, P.C., Förster, A. and Schrötter, J., 1998, Field comparison of conventional and new technology temperature logging systems: Geothermics, v. 27, no. 2, p. 131–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blackwell, D.D., Beardsmore, G.R., Nishimori, R.K., McMullen, R.J. (1999). High-Resolution Temperature Logs in a Petroleum Setting: Examples and Applications. In: Förster, A., Merriam, D.F. (eds) Geothermics in Basin Analysis. Computer Applications in the Earth Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4751-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4751-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7154-0

  • Online ISBN: 978-1-4615-4751-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics