Skip to main content

MSA Monooxygenase

An Enzyme from Terrestrial and Marine Bacteria which Degrades the Natural Sulfonate Methanesulfonate

  • Chapter
Novel Approaches for Bioremediation of Organic Pollution

Abstract

Sulfonates are organosulfur compounds with sulfur in the oxidation state +5 generally linked to a terminal carbon atom (R-CH2-SO3H). Naturally occuring sulfonates are usually non-aromatic and include taurine (2-aminoethanesulfonate), which is found abundantly in mammals (Huxtable, 1992), isethionate (2-hydroxyethanesulfonate), which occurs in red algae (Holst, 1994), the squid axon (Koechlin, 1954) and in mammals as a result of taurine conversion, cysteate (DL-2-amino-3-sulfopropionate), which is derived from cysteine, the archaebacterial coenzyme M (2-mercaptoethanesulfonate), the membrane constituents sulfonolipids, and methanesulfonate, which is discussed below. Synthetic sulfonates commonly have an aromatic nucleus, for example in the linear alkylbenzene sulfonate surfactants (LAS) or the sulfonated dyestuffs (Kertesz et al. 1994). Some of the artificial buffers used in the laboratory are sulfonates like 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), 4-(2-hydroxyethyl)piperazine-l-ethanesulfonic acid (HEPES) and 3-morpholinopropanesulfonic acid (MOPS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, S.C., Kelly, D.P., and J.C. Murrell (1991) Microbial degradation of methanesulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350:627–6628.

    Article  CAS  Google Scholar 

  • Batie, C.J., LaHaie, E., and D.P. Ballou (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J. Biol. Chem. 262:1510–1518.

    CAS  Google Scholar 

  • Byrne, A.M., Kukor, J.J., and R.H. Olsen (1995) Sequence-analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas picketti PK01. Gene 154:65–70

    Article  CAS  Google Scholar 

  • Charlson, R.J., Lovelock, J.E., Andrea, M.O., and S.G. Warren (1987) Oceanic phytoplankton, atmospheric sulphur cloud albedo and climate. Nature 326:655-ó61.

    Article  CAS  Google Scholar 

  • Chien, C.-C., Leadbetter, E.R., and W. Godchaux III (1995) Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol. Letters 129:189–194.

    CAS  Google Scholar 

  • De Marco, P. (1996) Molecular biology and genetics of methanesulfonic acid-utilising bacteria. PhD Thesis, University of Warwick.

    Google Scholar 

  • Denger, K., Laue, H., and A.M Cook (1997) Anaerobic taurine oxidation: A novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143:1919–1924.

    Article  CAS  Google Scholar 

  • Haigler, B.E. and D.T. Gibson (1990) Purification and properties of NADH-FerredoxinNAPReductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172:457–464.

    CAS  Google Scholar 

  • Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P., and J.C. Murrell (1996) Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142:251–260.

    Article  CAS  Google Scholar 

  • Higgins, T.P., De Marco, P., and J.C. Murrell (1997) Purification and molecular characterization of the electron transfer protein of methanesulfonic acid monooxygenase. J. Bacteriol. 179:1974–1979.

    CAS  Google Scholar 

  • Holmes, A.J., Kelly, D.P., Baker, S.C., Thompson, A.S., De Marco, P., Kenna, E.M., and J.C. Murrell (1997) Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch. Microbiol. 167:46–53.

    Article  CAS  Google Scholar 

  • Holst, P.B., Nielsen, S.E., Anthoni, U., Bisht, K.S., Christophersen, C., Gupta, S., Parmar, V.S., Nielsen, P.H., Sahoo, D.B., and A. Singh. (1994) Isethionate in certain red algae. J. Appl. Phycol. 6:443–446.

    Article  CAS  Google Scholar 

  • Huxtable, R.J. (1992) Physiological actions of taurine. Physiol. Rev. 72:101–163.

    CAS  Google Scholar 

  • Johnston, J.B., Murray, K., and R.B. Chain (1975) Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Leuweenhoek. 41:493–511.

    Article  CAS  Google Scholar 

  • Kelly, D.P., Malin, G., and A.P. Wood (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Microbial growth on Cl compounds (Murrell, J.C. and D.P. Kelly eds.) pp 47–64. Intercept, Andover, UK.

    Google Scholar 

  • Kelly, D.P., Baker, S.C., Trickett, J., Davey, M., and J.C. Murrell (1994) Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426.

    Article  CAS  Google Scholar 

  • Kertesz, M.A., Cook, A.M., and T. Leisinger (1994) Microbial metabolism of sulfur-and phosphorus-containing xenobiotics. FEMS Microbiol. Reviews 15:195–215.

    CAS  Google Scholar 

  • Koechlin, B.A. (1954) The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers. Proc. Natl. Acal. Scie. USA 40:60–62.

    Article  CAS  Google Scholar 

  • Locher, H.H., Thurnheer, T., Leisinger, T., and A.M. Cook. (1989) 3-nitrobenzenesulfonate, 3-aminobenzenesulfonate, and 4-aminobenzenesulfonate as sole carbon-sources for bacteria. Appl. Environ. Microbiol. 55:492–494.

    CAS  Google Scholar 

  • Nordlund, P.H., Dalton, H., and E. Eklund (1992) The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribinucleotide reductase. FEBS Lett. 307:257–262.

    Article  CAS  Google Scholar 

  • Saigne, C. and Legrand (1987) Measurements of methanesulphonic acid in Antarctic ice. Nature 330:240–242.

    Article  CAS  Google Scholar 

  • Seitz, A.P., Leadbetter, E.R., and W. Godchaux III (1993). Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans Arch. Microbiol. 159:440–444.

    CAS  Google Scholar 

  • Thompson A.S., Owens, N.J.P., and J.C. Murrell (1995) Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 61:2388–2393.

    CAS  Google Scholar 

  • Yen, K.-M., Karl, M.R., Blatt, L.M., Simon, M.J., Winter, R.B., Fausset, P.R., Lu, H.S., Harcourt, A.A., and K.K. Chen (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 173:5315–5327.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichenbecher, W., De Marco, P., Scanlan, J., Baxter, N., Murrell, J.C. (1999). MSA Monooxygenase. In: Fass, R., Flashner, Y., Reuveny, S. (eds) Novel Approaches for Bioremediation of Organic Pollution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4749-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4749-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7153-3

  • Online ISBN: 978-1-4615-4749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics