Skip to main content

Biodegradation of Organic Pollution Involving Soil Iron(III) Solubilized by Bacterial Siderophores as an Electron Acceptor

Possibilities and Perspectives

  • Chapter
Novel Approaches for Bioremediation of Organic Pollution

Summary

Microbial degradation of organic matter, like any oxidation process, requires an oxidizing agent. The role of the latter may be played by oxygen (the most common electron acceptor). However, under microaerobic conditions (ground water, subsurface soil) the supply of oxygen is limited, which, in its turn, may limit the biodegradation rate. An alternative possibility is the use of other electron acceptors, among which iron(III) is generally abundant in soil, yet being poorly soluble at physiological pH values. In this case its bioavailability can be essentially increased, e.g. by adding a chelating agent: NTA, EDTA, etc.

It should be noted that such an externally introduced chelator would increase also the bioavailability of a number of heavy metals which might then be easily accumulated in plants or otherwise affect the biota, including possible suppression of biodegrading microorganisms. This drawback can be avoided by using bacterial siderophores which selectively solubilize iron(III) and can be used by dissimilatory iron(III)-reducing bacteria that couple iron(III) reduction to oxidative degradation of organics. In this chapter, the possibilities are discussed for applying bacterial siderophores, as well as iron(III)-solubilizing bacterial cultures both “compatible” with the bacteria-biodegraders in sharing the resulting iron(III) chelate and viable in the presence of the organic matter to be degraded, as well as other possible contaminants. Plant-associated bacteria of the genus Azospirillum seem to be beneficial for the above applications as co-inoculants in concert with bacteriabiodegraders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T.A., and Coats, J.R. (eds.) (1994) Bioremediation through Rhizosphere Technology, ACS Symposium Series 563, American Chemical Society, Washington, D.C. 249 pp.

    Google Scholar 

  • Bacchawat, A.K., and Ghosh, S. (1987) Iron transport in Azospirillum brasilense: role of siderophore spirilobactin. J. Gen. Microbiol. 133:1759–1765.

    Google Scholar 

  • Barkovskii, A.L., Bouillant, M.-L., and Balandreau, J. (1994) Polyphenolic compounds respired by bacteria, p. 2842. In T.A. Anderson and J.R. Coats (eds.), Bioremediation through Rhizosphere Technology, ACS Symposium Series 563, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Barkovskii, A.L., Bouillant, M.-L., Monrozier, L.J., and Balandreau, J. (1995-a) Azospirillum strains use phenolic compounds as intermediates for electron transfer under oxygen-limiting conditions. Microb. Ecol. 29:99–114.

    Google Scholar 

  • Barkovskii, A.L., Korshunova, V.E., and Pozdnyacova, L.I. (1995-b) Catabolism of phenol and benzoate by Azospirillum strains. Appl. Soil Ecol. 2:17–24.

    Article  Google Scholar 

  • Bashan, Y., Holguin, G. (1997) Azospirillum-plant relationships - environmental and physiological advances (1990–1996). Can. J. Microbiol. 43(2):103–121.

    Article  CAS  Google Scholar 

  • Bashan, Y., and Levanony, H. (1987) Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field experiments. J. Gen. Microbiol. 133:3473–3480.

    Google Scholar 

  • Biro, B., Bayoumi Hamuda, H.E.A.F., and Kecskes, M. (1995) Associative, symbiotic N2-fixers and scavenger strains, affected by Cue’ and Znz’ in vitro, p. 495–500. In I. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Google Scholar 

  • Bradley, P., and Chapelle, F.H. (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer systems. Environ. Sci. Technol. 30:2084–2086.

    Article  CAS  Google Scholar 

  • Braun, V. (1997) Avoidance of iron toxiCity through regulation of bacterial iron transport. Biol. Chem. 378:779–786.

    CAS  Google Scholar 

  • Briat, J.-F. (1992) Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138:2475–2483.

    Article  CAS  Google Scholar 

  • Caccavo, F., Jr., Schamberger, P.C., Keiding, K., and Nielsen, P.H. (1997) Role of hydrophobiCity in adhesion of the dissimilatory Fe(IIl)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl. Envir. Microbiol. 63:3837–3843.

    CAS  Google Scholar 

  • Costacurta, A., and Vanderleyden, J. (1995) Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1–18.

    Google Scholar 

  • Daun, G., Lenke, H., Desiere, F., Stolpmann, H., Warrelmann, J., Reuss, M., and Knackmuss, H.-J. (1995) Biological treatment of TNT-contaminated soil by a two-stage anaerobic/aerobic process, p. 337–346. In W.J. van den Brink, R. Bosman, and F. Arendt (eds.), Contaminated Soil’95, Kluwer, Dordrecht.

    Google Scholar 

  • Deng, Y. (1997) Formation of iron(1l1) hydroxides from homogeneous solutions. Water Res. 31:1347–1354.

    Article  CAS  Google Scholar 

  • Dobereiner, J., and Pedrosa, F. (1987) Nitrogen-fixing Bacteria in Nonleguminous Crop Plants. Springer, Berlin. Emery, J. (1980) Iron deprivation as a biological defence mechanism. Nature (London) 287:537.

    Google Scholar 

  • Fendrik, I., del Gallo, M., Vanderleyden, J., and de Zamaroczy, M. (eds.) (1995) Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Book  Google Scholar 

  • Glass, B.L. (1972) Relation between the degradation of DDT and the iron redox system in soils. J. Agric. Food Chem. 20:324–327.

    Article  CAS  Google Scholar 

  • Golovlyova, L.A. (1992) Microbial methods for decontamination of soil and ground water. Biotekhnologiya (No. 5):60–64.

    Google Scholar 

  • Gondola, I., and Kadar, L. (1994, Pub. 1995) Heavy metal content of flue-cured tobacco leaf in different growing regions of Hungary. Acta Agron. Hung. 43(3–4):243–251.

    Google Scholar 

  • Gorby, Y., Kennedy, D., and Workman, D. (1996) Reductive dechlorination of carbon tetrachloride by biogenic ferrous iron, p. 107. In 1996 International Symposium on Subsurface Microbiology, 15–21 September 1996, Davos, Switzerland.

    Google Scholar 

  • Gowri, P.M., and Srivastava, S. (1996-a) Zinc resistance in Azospirillum brasilense Sp7 and its applications, p. 135–143. In M. Moo-Young, W.A. Anderson, and A.M. Chakrabarty (eds.), Environmental Biotechnology, Kluwer, Dordrecht.

    Google Scholar 

  • Gowri, P.M., and Srivastava, S. (1996-b) Reduced uptake based zinc resistance in Azospirillum brasilense Sp7. Curr. Sci. 71:139–142.

    CAS  Google Scholar 

  • Heijman, C., Grieder, E., Holliger, C., and Schwarzenbach, R.P. (1995) Abiotic reduction of nitroaromatic corn-pounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol. 29:775–783.

    Article  CAS  Google Scholar 

  • Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R.P., and Vazquez, F. (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol. Rev. 20:517–523.

    Article  CAS  Google Scholar 

  • losipenko, A., and Ignatov, V. (1995) Physiological aspects of phytohormone production by Azospirillum brasilense Sp7, p. 307–312. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Chapter  Google Scholar 

  • Ismailov, N.M. (1988) Microbiology and enzymatic activity of oil-contaminated soils, p. 42–56. In M.A. Gla-zovskaya (ed.), Rehabilitation of oil-contaminated soil ecosystems, Nauka, Moscow (in Russian).

    Google Scholar 

  • Kamnev, A.A. (1998) On the possibility of reductive solubilization of iron(III) by some plant and microbial meta-bolites as an alternative to siderophore secretion. Dokl. Akad. Nauk (Moscow) 359 (No. 5): in press.

    Google Scholar 

  • Kamnev, A.A., and Kuzmann, E. (1997-a) Some rhizobacterial metabolites of non-siderophore nature as possible solubilizing agents for soil ferric species, p. 85–86. In P. Carmona, R. Navarro and A. Hernanz (eds.), Spectroscopy of Biological Molecules: Modern Trends. Annex, UNED, Madrid.

    Google Scholar 

  • Kireeva, N.A. (1994) Microbiological Processes in Oil Contaminated Soils, Bashkir State University Press, Ufa, 171 pp. (in Russian).

    Google Scholar 

  • Kireeva, N.A., Novoselova, E.I., and Khaziev, F.Kh. (1997) Enzymes of nitrogen metabolism in soil polluted with oil. Izv. Ross. Akad. Nauk. Ser. biol. (No. 6):755–759.

    Google Scholar 

  • Klausen, J., Tröber, S.P., Haderlein, S.B., and Schwarzenbach, R.P. (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ. Sci. Technol. 29:2396–2404.

    Article  CAS  Google Scholar 

  • Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature (London) 286:885–886.

    Article  CAS  Google Scholar 

  • Lenke, H., Warrelmann, J., Daun, G., Walter, U., Sieglen, U., and Knackmuss, H.-J. (1997) Bioremediation of TNT-contaminated soils, p. 15. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997, Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.

    Google Scholar 

  • Lindsay, W.L., and Schwab, A.P. (1982) The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821–840.

    Article  CAS  Google Scholar 

  • Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259–287.

    CAS  Google Scholar 

  • Lovley, D.R. (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20:305–313.

    Article  CAS  Google Scholar 

  • Lovley, D.R., and Coates, J.D. (1997) Bioremediation of metal contamination. Curr. Opinion Biotechnol. 8:285289.

    Google Scholar 

  • Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration. Nature (London) 382:445–448.

    Article  CAS  Google Scholar 

  • Lovley, D.R., and Phillips, E.J.P. (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:1472–1480.

    CAS  Google Scholar 

  • Lovley, D.R., and Woodward, J.C. (1996) Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem. Geol. 132:19–24.

    Article  CAS  Google Scholar 

  • Lovley, D.R., Woodward, J.C., and Chapelle, F.H. (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ill) ligands. Nature (London) 370:128–131.

    Article  CAS  Google Scholar 

  • Lur’e, Yu.Yu. (1989) Handbook of Analytical Chemistry, 6th edn., Khimiya Publishers, Moscow (in Russian).

    Google Scholar 

  • Magalhaes, F.M.S., Baldani, J.I., Souto, S.M.. Kuykendall, J.R., and Dobereiner, J. (1983) A new acid tolerant Azospirillum species. Ann. Acad. Bras. Sci. 55:417–430.

    Google Scholar 

  • Malakul, P., Brouhard, G., Srinivasan, K., and Wang, H.Y. (1997) Metal toxiCity reduction in PAH biodegradation using metal chelating adsorbents, p. 145. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997, Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.

    Google Scholar 

  • Mori, E., Fani, R., and Fulchieri, M. (1995) Involvement of Ion protease of Azospirillum brasilense in iron uptake, p. 137–141. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Google Scholar 

  • Munch, J.C., and Ottow, J.C.G. (1983) Reductive transformation mechanism of ferric oxides in hydromorphic soils. Environ. Biogeochem. Ecol. Bull. (Stockholm) 35:383–394.

    CAS  Google Scholar 

  • Okon, Y. (ed.) (1994) Azospirillum/Plant Associations, CRC Press, Boca Raton.

    Google Scholar 

  • Panchenko, L.V., and Turkovskaya, O.V. (1996) Surfactant waste water treatment in the presence of accompanying pollutants, p. 359. In K.G. Skryabin (ed.), Bayev Memorial Conference, May 20–22, 1996. Abstracts, “Bioengineering” Centre, Russian Academy of Sciences, Moscow.

    Google Scholar 

  • Polyanskaya, L.M., Golovchenko, A.V., and Zvyagintsev, D.G. (1995) Microbial biomass in soils. Dokl. Akad. Nauk (Moscow) 344:846–848.

    CAS  Google Scholar 

  • Prikryl, Z., Vancura, V., and Wurst, M. (1985) Auxin formation by rhizospheric bacteria as a factor of root growth. Biol. Plant. 27:159–163.

    Article  CAS  Google Scholar 

  • Razo-Flores, E., Donlon, B., Lettinga, G., and Field, J.A. (1997) Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiol. Rev. 20:525–538.

    Article  CAS  Google Scholar 

  • Ruppel, S., and Merbach, W. (1997) Effect of ammonium and nitrate on ‘N,-fixation of Azospirillum spp. and Pantoea agglomerans in association with wheat plants. Microbiol. Res. 152:377–383.

    Article  CAS  Google Scholar 

  • Russel, S., and Muszynski, S. (1995) Reduction of4-chloronitrobenzene by Azospirillum lipolerum, p. 369–375. In I. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Google Scholar 

  • Sigel, A., and Sigel, H., eds. (1998) Metal Ions in Biological Systems. Vol. 35. Iron Transport and Storage in Microorganisms, Plants, and Animals, Marcel Dekker, New York. 824 pp.

    Google Scholar 

  • Trepte, B. (1997) Fe(II1) ligands as oxidants to enhance bioremediation, p. 139. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997,Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.

    Google Scholar 

  • Umarov, M.M. (1986) Associative Nitrogen Fixation, Moscow University Press, Moscow (in Russian).

    Google Scholar 

  • Vel’kov, V.V. (1995) Bioremediation: principles, problems, approaches. Biotekhnologiya (No. 3–4):20–27.

    Google Scholar 

  • White, C., Sayer, J.A., and Gadd, G.M. (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20:503–516.

    Article  CAS  Google Scholar 

  • Zhulin, I.B., Bespalov, V.A., Johnson, M.S., and Taylor, B.L. (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178:5199–5204.

    CAS  Google Scholar 

  • Zhulin, I.B., and Taylor, B.L. (1995) Chemotaxis in plant-associated bacteria: the search for the ecological niche, p. 451–459. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kamnev, A.A., Antonyuk, L.P., Ignatov, V.V. (1999). Biodegradation of Organic Pollution Involving Soil Iron(III) Solubilized by Bacterial Siderophores as an Electron Acceptor. In: Fass, R., Flashner, Y., Reuveny, S. (eds) Novel Approaches for Bioremediation of Organic Pollution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4749-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4749-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7153-3

  • Online ISBN: 978-1-4615-4749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics