Skip to main content

Bioavailability of 1,2,3,4-Tetrachlorodibenzo-p-Dioxin (TCDD) for Dechlorination by an Anaerobic Microbial Consortium, in the Presence of Dissolved Organic Carbon

Preliminary Results

  • Chapter
Novel Approaches for Bioremediation of Organic Pollution

Abstract

The availability of persistent and hydrophobic compounds such as chlorinated dioxins (log Kow 3.4.-13.08 Mackay et al., 1992) for bacteria is often thought to be the limiting factor for their biodegradation and therefore also the limiting factor for the bioremediation of these compounds (Leahy and Colwell, 1990; Mihelcic et al., 1993; Harms and Bosma, 1997). The fraction of these compounds freely dissolved in the water phase is commonly thought to be the amount readily bioavailable (Belfroid et al., 1996). The fraction of the compound sorbed to sediment or to dissolved organic carbon (DOC) is thought to be either reversibly or irreversibly bound and therefore slowly or not at all available for biodegradation (Leahy and Colwell, 1990; Mihelcic et al., 1993; Harms and Bosma, 1997). In this situation the fraction dissolved in the water phase and the rate of desorption of the sorbed fraction determines the degradation rate of the compound. Sediment or DOC is often excluded from experiments to determine the rate of degradation of such compounds by micro-organisms. However, natural systems always include sediment or soil and DOC, and moreover bacteria tend to produce, to excrete or to be associated with DOC (Wetzel, 1975; Stumm and Morgan, 1981). This is an argument why DOC (or sediment) should be included in degradation experiments when bioavailability or bioremediation is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaens P., Chang P.R., and Barkovskii A.L. (1996). Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environment. Chemosphere 32: 433–441.

    Article  CAS  Google Scholar 

  • Assaf-Anid N. Nies L., and Vogel T.M. (1992). Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl. Environ. Microbiol. 58: 1057–1060.

    CAS  Google Scholar 

  • Barkovskii A.L., Bouilant M.L., Monrozier, L.J., and Balandreau, J. (1995). Azospirillum strains use phenolic compounds as intermediates for electron transfer under oxygen-limiting conditions. Microb. Ecol. 29: 99–114.

    Article  CAS  Google Scholar 

  • Belfroid, A.C., Sijm, D.T.H.M., and Van Gestel, C.A.M. (1996). Bioavailability and toxicokinetics of hydrophobic aromatic compounds in bentic and terrestrial invertebrates. Environ. Rev 4: 276–299.

    Article  CAS  Google Scholar 

  • Beurskens J.E.M., Toussaint M., De Wolf J., van der Steen, J.M.D., Slot, P.C., Commandeur, L.C.M., and Parsons, J.R. (1995). Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 14: 939–943.

    Article  CAS  Google Scholar 

  • Beurskens J.E.M., Mol G.A.J., and Barreveld H.L. (1993). Geochronology of priority pollutants in a sedimentation area of the Rhine river. Environ. Toxicol. Chem. 12: 1549–1566.

    Article  CAS  Google Scholar 

  • Commandeur L.C.M., and Parsons JR. (1994). Biodegradation of halogenated aromatic compounds. In Ratledge C, ed. Biochemistry of Microbial Degradation. Dordrecht: Kluwer: 423–458.

    Chapter  Google Scholar 

  • Curtis G.P„ and Reinhard, M. (1994). Reductive dehalogenation of hexachloroethane, carbon tetrachloride and bromoform by anthrahydroquinone disulfonate and humic acid. Environ Sci. Technol. 28: 2393–2401.

    Article  CAS  Google Scholar 

  • Dolfing J.(1990). Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB I. Arch. Microbiol. 153: 264–266.

    Article  CAS  Google Scholar 

  • Dort, van H.M., and Bedard, D.L. (1991). Reductive ortho and meta Dechlorination of a Polychlorinated biphenyl congener by anaerobic bacteria. Appl. Environ. Microbial. 57, 1576.

    Google Scholar 

  • Gantzer C.J., and Wackett L.P. (1991). Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci. Technol. 25: 715–722.

    Article  CAS  Google Scholar 

  • Gray, A.P., Cepa, S.P., Solomon I.J., and Aniline, O. (1976). Synthesis of specific polychlorinated dibenzo-p-dioxins. J. Org . Chem., Vol.41, 2435.

    Article  CAS  Google Scholar 

  • Guetzloff, T.F., and Rice, J.A. (1994). Does humic form a micelle? Sci. Tot. Environ. 152: 31–35.

    Article  CAS  Google Scholar 

  • Harms, H., and Bosma, T.N.P. (1997). Mass transfer limitations of microbial growth and pollutant degradation. J. Ind. Microbial. Biotechnol. 18: 97–105.

    Article  CAS  Google Scholar 

  • Katayama, A, Fujiama, Y., and Kuwatsuka, S. (1993). Microbial degradation of DDT at extremely low concentrations. J. Pesticide Sci. 18: 289--298.

    Article  Google Scholar 

  • Kukkonen, J., McCarty, J.F., and Oikari, A. (1990). Effects of XAD-8 fractions of dissolved organic carbon on the sorption and bioavailability of organic micropollutants. Arch. Environ. Contam. Toxicol. 19: 551–557.

    Article  CAS  Google Scholar 

  • Leahy, J.G., and Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbial. Rev.54: 305–315.

    CAS  Google Scholar 

  • Landrum, P.F., Gossiaux, D.C., and Kukkonen, J. (1997). Sediment characteristics influencing the bioavailability of nonpolar organic contaminants to Diporeia spp. Chem. Spec. Bioavail. 9(2): 43–55.

    CAS  Google Scholar 

  • Lovley D.R, Coates J.D., Blunt-Harris E.L., Phillips, E.J.P., and Woodward, J.C., (1996a). Humic substances as electron acceptors for microbial respiration. Nature. 382: 445–448.

    Article  CAS  Google Scholar 

  • Lovley D.R., Woodward J.C., and Chapelle F.H.. (1996b). Rapid anaerobic benzen oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbial. 62: 288–291.

    CAS  Google Scholar 

  • Mackay D., Shiu W.Y., and Ma K.C. (1992). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Chelsea (Michigan): Lewis publishers. 11: 368–483.

    Google Scholar 

  • Mihelcic, J.R., Lueking, D.R., Mitzell, R.J., and Stapleton, J.M. (1993). Bioavailability of sorbed-and seperatephase chemicals. Biodegradation. 4: 141–153.

    Article  CAS  Google Scholar 

  • Mohn W.W., and Tiedje J.M. (1992). Microbial reductive dehalogenation. Microbiol. Rev., 56: 482–507.

    CAS  Google Scholar 

  • Parsons, J.R. (1992). Influence of suspended sediment on the biodegradation of chlorinated dibenzo-p-dioxins. Chemospere. 25: 1973–1980.

    Article  CAS  Google Scholar 

  • Pohland, A.E., and Yang, G.C. (1972). Preparation and characterization of chlorinated dibenzo-p-dioxins. J. Agric. Food Chem. 20: 1093–1099.

    Article  CAS  Google Scholar 

  • Robinson, K.G., and Novak, J.T. (1994). Fate of 2,4,6-trichloro(C14)-phenol bound to dissolved humic acid. Wat. Res. 28: 445–452.

    Article  CAS  Google Scholar 

  • Schnitzer, M., and Khan, S.U. (1972). Humic substances in the environment. Marcel Dekker, INC. New York.

    Google Scholar 

  • Schumacher W., and Holliger C. (1996). The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrictus”. J. Bacterial. 178: 2328–2333.

    CAS  Google Scholar 

  • Stumm, W., and Morgan, J.J. (1981). Aquatic Chemistry, 2nd edition, Wiley, New York.

    Google Scholar 

  • Suffet, H.l., and MacCarty, P. (editors) (1989). AquaticHumic substances. In fluence on fate and treadment of pollutants. American Chemical Society, Washington, DC.

    Google Scholar 

  • Toussaint M., Beurskens J.E.M., De Wolf J., Grooteman, M.N., van der Steen, J.M.D., Slot, P.C., and Parsons, J.R. (1998). Elucidation of the dechlorination pathway of 1,2.3,4-TCDD by an anaerobic microbial mixed culture isolated from sediment. in prep.

    Google Scholar 

  • Wetzel, R.G. (1975). Limnology. W.B. Saunders Company, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toussaint, M., Krop, H.B., Grooteman, M.N., van Breugel, M., de Vries, P., Parsons, J.R. (1999). Bioavailability of 1,2,3,4-Tetrachlorodibenzo-p-Dioxin (TCDD) for Dechlorination by an Anaerobic Microbial Consortium, in the Presence of Dissolved Organic Carbon. In: Fass, R., Flashner, Y., Reuveny, S. (eds) Novel Approaches for Bioremediation of Organic Pollution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4749-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4749-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7153-3

  • Online ISBN: 978-1-4615-4749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics