Skip to main content

Strategies for Second-Line Antiretroviral Therapy in Adults with HIV Infection

  • Chapter
Antiviral Chemotherapy 5

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 458))

Abstract

With the use of combination antiretroviral therapy for treatment of human immunodeficiency virus type one (HIV) infection, patient outcome has improved. Rates of deaths from acquired immunodeficiency syndrome (AIDS) and rates of new AIDS-defining illnesses have decreased in countries with resources to make treatment widely available to persons with HIV infection.1,2 However, as the number of agents and tools available to treat and monitor HIV infection have increased, the complexity of management has also increased.3,4 The management issues about patients on antiretroviral therapy who are having less than an ideal response are especially challenging, and will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palella FJ, Delaney KM, Moorman AC. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med. 1998; 338: 853–60.

    Article  PubMed  Google Scholar 

  2. Mouton Y, Alfandari S, Valette M, et al. Impact of protease inhibitors on AIDS-defining events and hospi-talizations in 10 French AIDS reference centres. AIDS 1997; 11: F101–105.

    Article  Google Scholar 

  3. Saag MS, Holodniy M, Kuritzkes DR, et al. HIV viral load markers in clinical practice. Nature Medicine. 1996; 2: 625–629.

    Article  PubMed  CAS  Google Scholar 

  4. Hirsch MS, Conway B, D’ Aquila R, et al. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. JAMA 1998; 279: 1984–1991.

    Article  PubMed  CAS  Google Scholar 

  5. Centers for Disease Control and Prevention. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Morbidity and Mortality Weekly Report 1998; 47(RR-5): 43–82.

    Google Scholar 

  6. Centers for Disease Control. Report of the NIH Panel to define principles of therapy of HIV infection and guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. Morbidity and Mortality Weekly Report 1998; 47(RR-5): l–39.

    Google Scholar 

  7. Carpenter CCJ, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1997: updated recommendations of the International AIDS Society-USA Panel. JAMA 1998; 280: 78–86.

    Article  PubMed  CAS  Google Scholar 

  8. Gazzard BG, Moyle GJ, Weber J, et al., for the BHIVA Guidelines Co-ordinating Committee. British HIV Association guidelines for antiretroviral treatment of HIV seropositive individuals. Lancet. 1997; 349: 1086–1092.

    Article  Google Scholar 

  9. Mellors JW, Rinaldo CR, Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996; 272: 1167–1170.

    Article  PubMed  CAS  Google Scholar 

  10. Mellors JW, Mufloz A, Giorgi JV, et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med. 1997; 126: 946–954.

    PubMed  CAS  Google Scholar 

  11. Farzadegan HY, Hoover DR, Astemborski J, et al. Gender differences in the relationship between HIV-1 and progression to AIDS. 12th World AIDS Conference. Abstract 13384. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  12. Piatak M, Saag MS, Yang LC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993; 259: 1749–1754.

    Article  PubMed  CAS  Google Scholar 

  13. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995; 373: 117–122.

    Article  PubMed  CAS  Google Scholar 

  14. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995; 373: 123–126.

    Article  PubMed  CAS  Google Scholar 

  15. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996; 271: 1582–1586.

    Article  PubMed  CAS  Google Scholar 

  16. Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995; 267: 483–489.

    Article  PubMed  CAS  Google Scholar 

  17. Havlir DV, Richman DD. Viral dynamics of HIV-implications for drug development and therapeutic strategies. Ann Intern Med. 1996; 124: 984–994.

    PubMed  CAS  Google Scholar 

  18. Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zi-dovudine (AZT). Science 1989: 246: 1115–1158.

    Article  Google Scholar 

  19. Larder BA. Ineractions between drug-resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. J Gen Virol. 1994; 75: 951–957.

    Article  PubMed  CAS  Google Scholar 

  20. Condra JH, Schleif WA, Blahy OM, et al. In vivo emergence of HIV-1 variants resistance to multiple protease inhibitors. Nature. 1995; 374: 569–571.

    Article  PubMed  CAS  Google Scholar 

  21. Markowitz M, Mo H, Kempf DJ, et al. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol. 1995; 69: 701–716.

    PubMed  CAS  Google Scholar 

  22. Condra JH, Holder DJ, Schleif WA, et al. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol. 1996; 70: 8270–8276.

    PubMed  CAS  Google Scholar 

  23. Roberts NA. Drug-resistance patterns of saquinavir and other HIV proteinase inhibitors. AIDS 1995; 9: S27–S32.

    Article  CAS  Google Scholar 

  24. Harrigan PR, Kinghorn I, Bloor S, et al. Signifiance of amino acid variation at human immunodeficiency virus type 1 reverse transcriptase residue 210 for zidovudine susceptibility. J Virol. 1996; 70: 5930–5934.

    PubMed  CAS  Google Scholar 

  25. Hooker DJ, Tachedjian G, Solomon AE, et al. An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3’-azido-3’-deoxythymidine. J Virol. 1996; 70: 8010–8018.

    PubMed  CAS  Google Scholar 

  26. Havlir D, McLaughlin MM, Richman DD. A pilot study to evaluate the development of resistance to nevi-rapine in asymptomatic human immunodeficiency virus-infected patients with CD4 cell counts of > 500/mm3: AIDS Clinical Trials Group Protocol 208. J Infect Dis. 1995; 172: 1379–1383.

    Article  PubMed  CAS  Google Scholar 

  27. Havlir D, Cheeseman SH, McLaughlin M, et al. High-dose nevirapine: safety, pharmacokinetics, and antiviral effect in patients with human immunodeficiency virus infection. J Infect Dis. 1995; 171: 537–545.

    Article  PubMed  CAS  Google Scholar 

  28. Schuurman R, Nijhuis M, van Leeuwen R, et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC) J Infect Dis. 1995; 171: 1411–1419.

    Article  PubMed  CAS  Google Scholar 

  29. Wainberg MA, Salomon G, Gu Z, et al. Development of HIV-1 resistance to (-)2’-deoxy-3’-thiacytidine in patients with AIDS or advanced AIDS-related complex. AIDS 1995; 9: 351–357.

    PubMed  CAS  Google Scholar 

  30. Larder BA, Darby G, Richman DD. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science. 1989; 243: 1731–1734.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobsen H, Hä nggi, Ott M, et al. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies. J Infect Dis. 1996; 173: 1379–1381.

    Article  PubMed  Google Scholar 

  32. Tisdale M, Demp SD, Parry NR, et al. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3’-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acac Sci USA 1993; 90: 5653–5656.

    Article  CAS  Google Scholar 

  33. Larder BA, Kemp SD, Harrigan PR. Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science. 1995; 269: 696–699.

    Article  PubMed  CAS  Google Scholar 

  34. Miller M, Anton KE, Mulato AS, et al. HIV-1 expressing the 3TC-associated M184V mutation in reverse transcriptase (RT) shows increased sensitivity to adefovir and PMPA as well as decreased replication capacity in vitro. 12th World AIDS Conference. Abstract 41214. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  35. D’ Aquila RT, Johnson VA, Welles SL, et al. Zidovudine resistance and HIV-1 disease progression during antiretroviral therapy. Ann Intern Med 1995; 122: 401–418.

    PubMed  Google Scholar 

  36. Japour AJ, Welles S, D’ Aquila RT, et al. Prevalence and clinical significance of zidovudine resistance mutations in human immunodeficiency virus isolated from patients after long-term zidovudine treatment. J Infect Dis. 1995; 171: 1172–1179.

    Article  PubMed  CAS  Google Scholar 

  37. Miller V, Phillips A, Rottmann C, et al. Dual resistance to zidovudine and lamivudine in patients treated with zidovudine-lamivudine combination therapy: association with therapy failure. J Infect Dis. 1998; 177: 1521–1532.

    Article  PubMed  CAS  Google Scholar 

  38. Lanier ER, Smiley ML, St. Clair MH, et al. Phenotypic HIV resistance in vitro correlates with viral load response to abacavir (1592, ABC) in vivo. 12th World AIDS Conference. Abstract 231/32289. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  39. Deeks, S. Twenty-week HIV RNA response and correlation with baseline phenotypic drug susceptibility during treatment with a novel quadruple salvage regimen after failure of indinavir combination therapy. 12th World AIDS Conference. Abstract 22490. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  40. Hertogs K, Larder B, Mellors J, et al. Patterns of phenotypic and genotypic cross-resistance among protease inhibitors in over 1,000 clinical HIV-1 isolates. 12th World AIDS Conference. Abstract 42195. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  41. Workman C, Mussen R, Sullivan J. Salvage therapy using six drugs in heavily pretreated patients. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 426. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  42. Gulick RM, Mellors, JW, Havlir D, et al. Simultaneous vs sequential initiation of therapy with indinavir, zidovudine, and lamivudine for HIV-1 infection: 100-week follow-up. JAMA 1998; 280: 35–41.

    Article  PubMed  CAS  Google Scholar 

  43. Saag M, Knowles M, Chang Y, et al. for the Viracept Cooperative Study Group. Durable effect of Viracept (nelfinavir mesylate, NFV) in triple combination therapy. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Poster I-101. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  44. Wong JK, Hezareh M, Gü nthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997; 278: 1291–1295.

    Article  PubMed  CAS  Google Scholar 

  45. Finzi D, Gallant J, Chadwick K, et al. Latent viral reservoirs in patients on highly active antiretroviral therapy: implications for virus eradication. 12th World AIDS Conference. Abstract 273/11150. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  46. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997; 278: 1295–1300.

    Article  PubMed  CAS  Google Scholar 

  47. Chun T-W, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94: 13193–13197.

    Article  PubMed  CAS  Google Scholar 

  48. Centers for Disease Control. 1997 USPHS/IDSA Guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. Morbidity and Mortality Weekly Report 1997; 46(RR-12): 1–46.

    Google Scholar 

  49. Flexner C. HIV-protease inhibitors. N Engl J Med. 1998; 338: 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  50. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy (LD) hyperlipidemia and insulin resistance due to HIV protease inhibitors (PI’ s). 5th Conference on Retroviruses and Opportunistic Infections. Abstract 410. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  51. Walli RK, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1 infected patients. AIDS 1998; 12: F167–173.

    Article  PubMed  CAS  Google Scholar 

  52. Hengel RL, Watts NB, Lennox J. Benign symmetric lipomatosis associated with protease inhibitors. Lancet. 1997; 350: 1596.

    Article  PubMed  CAS  Google Scholar 

  53. Henry K, Melroe H, Huebsch J, et al. Severe premature coronary artery disease with protease inhibitors. Lancet. 1998; 351: 1328.

    Article  PubMed  CAS  Google Scholar 

  54. Lo JC, Mulligan K, Tai VW, et al. “ Buffalo hump” in men with HIV-1 infection. Lancet 1998; 351: 867–870.

    Article  PubMed  CAS  Google Scholar 

  55. Miller KD, Jones E, Yanovski JA, et al. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998; 351: 871–875.

    Article  PubMed  CAS  Google Scholar 

  56. Nightingale SL. From the Food and Drug Administration. JAMA 1997: 278: 379.

    Article  PubMed  CAS  Google Scholar 

  57. Carr A, Cooper D, Thorisdottir A, et al. Prevalence and severity of protease inhibitor (p1) induced lipodystrophy (LD) and insulin resistance. 12th World AIDS Conference. Abstract LB 8. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  58. Bernasconi E, Carota A, Magenta L, et al. Metabolic changes in HIV-infected patients treated with protease inhibitors. 12th World AIDS Conference. Abstract 178/12375. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  59. Carr A, Samaras K, Chisholm DJ, et al. Pathogenesis of HIV-1 protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet. 1998; 351: 1881–1883.

    Article  PubMed  CAS  Google Scholar 

  60. Kempf DJ, Rode RA, Xu Y, et al. The duration of viral suppression during protease inhibitor therapy for HIV-1 infection is predicted by plasma HIV-1 RNA at the nadir. AIDS 1998; 12: F9–F14.

    Article  PubMed  CAS  Google Scholar 

  61. Montaner JSF, et al. A randomized double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: The INCAS Trial. JAMA 1998; 279: 930–937.

    Article  PubMed  CAS  Google Scholar 

  62. Raboud JM, Montaner JSG, Conway B, et al. Suppression of plasma viral load below 20 copies/ml is required to achieve a long-term response to therapy. AIDS 1998; 12: 1619–1624.

    Article  PubMed  CAS  Google Scholar 

  63. Stanley SK, Ostrowski MA, Justement JS, et al. Effect of immunization with a common recall antigen on viral expression in patients infected with human immunodeficiency virus type 1. N Engl J Med. 1996; 334: 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  64. Hammer SM, Squires KE, Hughes MD, et al, for the AIDS Clinical Trials Group 320 Team. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med. 1997; 337: 725–733.

    Article  PubMed  CAS  Google Scholar 

  65. Cameron DW, Heath-Chiozzi M, Danner S, et al, for the Advanced HIV Disease Ritonavir Study Group. Randomized placebo-controlled trial of ritonavir in advanced HIV-1 disease. Lancet. 1998; 351: 543–549.

    Article  PubMed  CAS  Google Scholar 

  66. Haubrich R, Lalezari J, Follansbee SE, et al. Improved survival and reduced clinical progression in HIV-infected patients with advanced disease treated with saquinavir plus zalcitabine. Antiviral Therapy 1998; 3: 33–42.

    CAS  Google Scholar 

  67. Tomino C, Vella S, Fragola FV, et al. A multicenter randomised study comparing ritonavir and indinavir in 1251 previously treated patients with CD4 below 50/mm3 (Italian ISS-IP1 Study Group). 12th World AIDS Conference. Abstract 132/12237. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  68. Gill MJ, Beall G, Beattie D, et al, for the NV15182 Study Team. Safety of saquinavir soft gelatin capsule (SQV-SGC) in combination with other antiretroviral agents: multicenter study NV15182: 24 week analysis. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract 1-90. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  69. Albrecht M, Katzenstein D, Bosch RJ, Liou SH, Hammer SM. ACTG 364: virologic efficacy of nelfinavir (NFV) and/or efavirenz (EFV) in combination with new nucleoside analogs in nucleoside experienced subjects. 12th World AIDS Conference. Abstract 12203. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  70. Martinez E, Gatell J, Buira E, et al. An open randomized trial comparing the effect of a triple combination therapy including d4T, 3TC, and a protease inhibitor (saquinavir, ritonavir, or indinavir) in adult HIV-1 infected patients previously treated with nucleoside reverse transcriptase inhibitors. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 370. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  71. Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med. 1997; 337: 734–739.

    Article  PubMed  CAS  Google Scholar 

  72. Harris M, Durakovic C, Rae S, et al. A pilot study of nevirapine, indinavir, and lamivudine among patients with advanced human immunodeficiency virus disease who have had failure of combination nucleoside therapy. J Infect Dis. 1998; 177: 1514–1520.

    Article  PubMed  CAS  Google Scholar 

  73. Clumeck N, Colebunders B, Vandercam B, et al. Randomized comparative outcome trial of indinavir (I) and ritonavir (R) in protease inhibitors (PI) naï ve HIV patients (p) with CD4 below 100 cells/μ l. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 386. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  74. Deeks S, Loftus R, Cohen P, et al. Incidence and predictors of virologic failure of indinavir and/or ritonavir in an urban health clinic. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  75. Piketty C, Castiel P, Gilquin J, et al. Prospective follow-up of 177 HIV-infected patients treated with indinavir in combination with nucleoside analogues. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Poster I-100. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  76. Clough LA, Haas DW, Raffanti S. Predictor and prevalence of incomplete virologie response to protease inhibitor-based highly active antiretroviral therapy (HAART) for HIV infection. 35th Annual Meeting of the Infectious Diseases Society of America. Abstracts 223. San Francisco, CA, September 13-16, 1997.

    Google Scholar 

  77. Izopet J, Salama G, Pasquier C, et al. Ultra sensitive detection of plasma HIV-1 RNA for predicting the durability of 3-drug antiretroviral therapy. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 326. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  78. Fessel WJ, Hurley LB. Outcomes of triple therapy that included a protease inhibitor (PI) among 2139 patients. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 145. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  79. Staszewski S, Phillips A, Miller V, et al. Virological response to protease inhibitors in an HIV clinic cohort. 12th World AIDS Conference. Abstract 12294. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  80. Hecht FM, Colfax G, Swanson M, et al. Adherence and effectiveness of protease inhibitors in clinical practice. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 151. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  81. Barbour C. Long term viral suppression using quadruple drug combination therapy in treatment experienced HIV/AIDS patients, following initial protease failure. 12th World AIDS Conference. Abstract 32295. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  82. Gallant JE, Barnett S, Raines BC, et al. Efficacy and durability of ritonavir/saquinavir (RTV/SQV) as salvage therapy after failure of initial protease inhibitor (PI) regimen. 12th World AIDS Conference. Abstract 12330. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  83. Kaufmann GR, Duncombe C, Cunningham P, et al. Treatment response and durability of a double protease inhibitor therapy with saquinavir and ritonavir in an observational cohort of HIV-1 infected individuals. AIDS 1998; 12: 1625–1630.

    Article  PubMed  CAS  Google Scholar 

  84. Lohmeyer J, Scihorst J, Friese G, et al. Combined nelfinavir/saquinavir protease inhibitor treatment in a BID regimen as salvage therapy in advanced HIV disease. 12th World AIDS Conference. Abstract 12303. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  85. Walmsley S, Walach C, Moses A, et al. Salvage therapy with a combination including nelfinavir in patients failing treatment including a protease inhibitor (PI). 12th World AIDS Conference. Abstract 12285. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  86. Cavorus A, Thompson CE, Salvato PD. Salvage therapy for antiretroviral failure in HIV+ patients. 12th World AIDS Conference. Abstract 22402. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  87. Para MF, Collier A, Coombs R, et al: ACTG 333. Antiviral effects of switching from saquinavir hard capsule (SQVhc) to saquinavir soft gelatin capsule (SQVsgc) vs. switching to indinavir (IDV) after prior saquinavir. Abstract 21. Thirty-fifty Annual Meeting of the Infectious Diseases Society of America (IDSA), San Francisco, California, September 14-16, 1997.

    Google Scholar 

  88. Para MF, Coombs R, Collier A, et al. Relationship of baseline genotype to RNA response in ACTG 333 after switching from long term saquinavir (SQVhc) to indinavir (IDV) or saquinavir soft gelatin capsule (SQVsgc). 5th Conference on Retroviruses and Opportunistic Infections. Abstract 511. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  89. Lori F, Malykh A, Cara A, et al. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science. 1994; 266: 801–805.

    Article  PubMed  CAS  Google Scholar 

  90. Gao, W-Y, Johns DG, Mitsuya H. Anti-human immunodeficiency virus type 1 activity of hydroxyurea in combination with 2’, 3’-dideoxynucleosides. Molecular Pharmacology 1994; 46: 767–772.

    PubMed  CAS  Google Scholar 

  91. Malley SD, Grange JM, Hamedi-Sangsari F, et al. Synergistic anti-human immunodeficiency virus type 1 effect of hydroxamate compounds with 2’, 3’-dideoxyinosine in infected resting human lymphocytes. Proc Natl Acad Sci. 1994; 91: 11017–11021.

    Article  PubMed  CAS  Google Scholar 

  92. Gao W-Y, Johns DG, Chokekijchai S, et al. Disparate actions of hydroxyurea in potentiation of purine and pyrimidine 2’, 3’-dideoxynucleoside activities against replication of human immunodeficiency virus. Proc Natl Acad Sci. 1995; 92: 8333–8337.

    Article  PubMed  CAS  Google Scholar 

  93. Giacca M, Zanussi S, Comar M, et al. Treatment of human immunodeficiency virus infection with hydroxyurea: virologic and clinical evaluation. J Infect Dis. 1996; 174: 204–209.

    Article  PubMed  CAS  Google Scholar 

  94. Mole L, Holodniy M. A pilot study of the tolerance and potential antiviral activity of hydroxyurea alone and in combination with ddl in HIV-infected subjects. Thirty-fifth Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, California, September 17-20, 1995, Abstract 1110.

    Google Scholar 

  95. Lori F, Jessen H, Foli A, et al. Long-term suppression of HIV-1 by hydroxyurea and didanosine. JAMA 1997; 277: 1437–1438.

    Article  PubMed  CAS  Google Scholar 

  96. Biron F, Lucht F, Peyramond D, et al. Anti-HIV activity of the combination of didanosine and hydroxyurea in HIV-1-infected individuals. J Acquired Immune Deficiency Syndromes. 1995; 10: 36–40.

    CAS  Google Scholar 

  97. Biron F, Lucht, F, Peyramond D, et al. Pilot clinical trial of the combination of hydroxyurea and didanosine in HIV-1 infected individuals. Antiviral Res. 1996; 29: 111–113.

    Article  PubMed  CAS  Google Scholar 

  98. Vila J, Biron F, Nugier F, Vallet T, Peyramond D. 1-year follow-up of the use of hydroxycarbamide and didanosine in HIV infection. Lancet. 1996; 348: 203–204.

    Article  PubMed  CAS  Google Scholar 

  99. Montaner JSG, Zala C, Conway B, et al. A pilot study of hydroxyurea among patients with advanced human immunodeficiency virus (HIV) disease receiving chronic didanosine therapy: Canadian HIV Trials Network Protocol 080. J Infect Dis. 1997; 175: 801–806.

    Article  PubMed  CAS  Google Scholar 

  100. Rusnak J, Bery A, Stinnette B, et al. DDI once daily vs twice daily alone and also with hydroxyurea once daily. 12th World AIDS Conference. Abstract 12352. Geneva Switzerland, June 18-July 3, 1998.

    Google Scholar 

  101. Seminari E, Maserati R, Lori F, et al. Long term suppression of HIV with a simple, non toxic, inexpensive combiantion of didanosine (ddl) plus hydroxyurea (HU). 12th World AIDS Conference. Abstract 41180. Geneva Switzerland, June 18-July 3, 1998.

    Google Scholar 

  102. Federici ME, Lupo S, Cahn I, et al. Hydroxyurea in combination regimens for the treatment of antiretroviral naï ve, HIV-infected adults. 12th World AIDS Conference, Geneva Switzerland, June 18-July 3, 1998, Abstract 12235.

    Google Scholar 

  103. Hellinger J, Torres R, Schrader S, et al. Safety and antiretroviral activity of hydroxyurea with ddl in HIV-infected individuals. Thirty-seventh Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC)., Abstract I-27. Toronto, Ontario, Canada, September 28-October 1, 1997.

    Google Scholar 

  104. Rossero R, McKinsey D, Green S, et al. Open label combination therapy with stavudine, didanosine, and hydroxyurea in nucleoside experienced HIV-1 infected patients. 5th Conference on Retroviruses and Opportunistic Infections, Chicago, IL. Abstract 653. February 1-8, 1998.

    Google Scholar 

  105. Rutschmann OT, Opravil M, Iten A, et al. A placebo-controlled trial of didanosine plus stravudine with and without hydroxyurea for HIV infection. The Swiss cohort study. AIDS 1998; 12:F71–F77.

    CAS  Google Scholar 

  106. Miles S, Winters RE, Ruane P. Salvage of multi-drug resistant HIV infection with d4T/3TC/hydroxyurea. 12th World AIDS Conference. Abstract 12205. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  107. Havlir DV, Marschner IC, Hirsch MS, et al. Maintenance antiretroviral therapy in HIV infected subjects with undetectable plasma HIV RNA after triple-drug therapy. N Engl J Med 1998; 18: 1261–1268.

    Article  Google Scholar 

  108. Pialoux G, Raffi F, Brun-Vezinet F, et al. A randomized trial of three maintenance regimens given after three months of induction therapy with zidovudine, lamivudine and indinavir in previously untreated HIV-1 infected patients. N Eng J Med 1998; 18: 1269–1276.

    Article  Google Scholar 

  109. Reijers MHE, Weverling GJ, Jurriaans S, et al. Maintenance therapy after quadruple induction therapy in HIV-1 infected individuals: Amsterdam Duration of Antiretroviral Medication (ADAM) study. Lancet. 1998; 352: 185–190.

    Article  PubMed  CAS  Google Scholar 

  110. Nguyen B-Y, Haas DW, Ramirez-Ronda C, et al. A pilot, multicenter, open-label, randomized study to compare the safety and activity of indinavir sulfate (IDV) administered every 8 hours (h) versus every 12 h in combination with zidovudine (ZDV) and lamivudine (3TC). 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract 191. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  111. Petersen A, Johnson M. Longterm comparison of BID and TID dosing Viracept (nelfinavir) in combination with stavudine (d4T) and lamivudine (3TC) in HIV patients. 12th World AIDS Conference. Poster 12224. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  112. Cohen C, Siemon-Hryczk P, Pilson R, et al. Potent and convenient Fortovase™ (SQV) SGC BID regimens in combination with 2 nucleosides or nelfinavir (NFV) plus 1 nucleoside in HIV-1 infected patients. 12th World AIDS Conference. Abstract 12314. Geneva, Switzerland, June 28-July 3,1998.

    Google Scholar 

  113. Kempf DJ, Marsh KC, Kumar G, et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrobial Agents and Chemotherapy. 1997; 41: 654–660.

    PubMed  CAS  Google Scholar 

  114. Cameron DW, Japour A, Mellors J, et al. Antiretroviral safety and durability of ritonavir (RIT)-saquinavir (SQV) in protease inhibitor-naï ve patients in year two of follow-up. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 388. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  115. Merry C, Barry MG, Mulcahy F, et al. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS 1997; 11: F29–F33.

    Article  PubMed  CAS  Google Scholar 

  116. Cassano P, Hermans P, Sommereijns B, et al. Combined quadruple therapy with ritonavir-saquinavir (RTV-SQV) + nucleosides in patients (p) who failed in triple therapy with RTV, SQV or indinavir (IDV). 5th Conference on Retroviruses and Opportunistic Infections. Abstract 423. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  117. de Truchis P, Force G, Zucman D, et al. Effects of “ salvage” combination therapy with ritonavir + saquinavir in HIV-infected patients previously treated with protease-inhibitors (PI). 5th Conference on Retroviruses and Opportunistic Infections. Abstract 425. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  118. Fatkenheuer G, Hunn N, Jutte A, et al. Efficacy and drug levels of ritonavir/saquinavir combination salvage therapy. 12th World AIDS Conference. Abstract 12316. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  119. Puig T, Bonjoch A, Ruiz L, et al. Usefulness of ritonavir and saquinavir combination therapy for HIV-ad-vanced patients failing on indinavir. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract I-201. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  120. Rodriguez-Rosado R, Soriano V, Jimenez I, et al. Efficacy and safety of the combination of ritonavir plus saquinavir, with two nucleoside analogues. 12th World AIDS Conference. Abstract 12336. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  121. Ruane PJ, Tarn JT, Libraty DH, et al. Salvage therapy using ritonavir/saquinavir with a non-nucleoside reverse transcriptase inhibitor after prolonged failure with indinavir or ritonavir. 12th World AIDS Conference. Abstract 32308. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  122. Tebas P, Kane E, Klebert M, et al. Virologic responses to a ritonavir/saquinavir-containing regimen in patients who have previously failed nelfinavir. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 510. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  123. Gallant J, Heath-Chiozzi M, Anderson R, et al. Phase II study of ritonavir-nelfmavir combination therapy: an update. 12th World AIDS Conference. Abstract 12207. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  124. Havlir D, Riddler S, Squires K, et al. Co-administration of indinavir (IDV) and nelfinavir (NFV) in a twice daily regimen: preliminary safety, pharmacokinetic and anti-viral activity results. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 393. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  125. Moyle G. Study of protease inhibitor combination in Europe (SPICE): saquinavir soft gelatin capsule (SQV-SGC) plus nelfinavir (NFV) in HIV-infected individuals. 12th World AIDS Conference. Poster 12222. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  126. Eron J, Haubrich R, Richman D, et al. Preliminary assessment of 141W94 in combination with other protease inhibitors. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 6. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  127. Saah A, Riddler S, Havlir DV, et al. Co-administration of indinavir and nelfinavir: pharmacokinetics, toler-ability, anti-viral activity, and preliminary viral resistance. 12th World AIDS Conference. Abstract 22352. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  128. Merry C, Barry MG, Mulcahy F, et al. Saquinavir pharmacokinetics alone and in combination with nelfinavir in HIV-infected patients. AIDS 1997; 11: F117–F120.

    Article  PubMed  CAS  Google Scholar 

  129. Dusek A, Hall D, Lamson M, et al. Once-daily dosing of nevirapine: a retrospective, cross-study analysis. 12th World AIDS Conference. Poster 12360. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  130. Reynes J, Denisi R, Bicart-see A, et al. STADI: sustained efficacy of once daily administration of didanos-ine in combination with stavudine. 12th World AIDS Conference. Abstract 22352. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  131. Japour A, Murphy R, Hicks C, et al. Safety and efficacy of ABT-378/ritonavir in antiretroviral naï ve patients: preliminary phase II results. 12th World AIDS Conference. Abstract LB4/12460. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  132. Wang Y, Tutton CM, Borin MT, et al. The safety, tolerance, pharmacokinetics, and efficacy of PNU-140690, a new non-peptidic HIV protease inhibitor, in a phase I/II study. 12th World AIDS Conference. Abstract 41176. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  133. Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-medicated virus entry. Nature 1998; 4: 1302.

    Article  CAS  Google Scholar 

  134. Daluge SM, Good SS, Faletto MB, et al. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 1997; 41: 1082–1093.

    PubMed  CAS  Google Scholar 

  135. Sonnerborg A, Lancaster D, Torres R, et al. The safety and antiviral effect of abacavir, alone and in combination with zidovudine in HIV-1 infected patients with CD4+ counts 200-500 cells/mm3. AIDS 1996, volume 10, supplement 2, abstract OP4.1

    Google Scholar 

  136. Torres R, Saag M, Lancaster D, et al. Antiviral effects of abacavir (1592) following 36 weeks of therapy. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 659. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  137. Fischl M, Greenberg S, Clumeck N, et al. Safety and activity of abacavir (1592, ABC) with 3TC/ZDV in antiretroviral naï ve subjects. 12th World AIDS Conference. Abstract 12230. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  138. Tisdale M, Myers RE, Snowden W. Genotypic and phenotypic analysis of HIV from patients on ZDV/3TC/amprenavir combination therapy. 12th World AIDS Conference. Abstract 32312. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  139. Mellors J, Lederman M, Haas D, et al. Antiretroviral effects of therapy combining abacavir with HIV protease inhibitors. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 4. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  140. Staszewski S, Morales-Ramirez J, Flanigan T, et al. A phase II, multicenter, randomized, open-label study to compare the antiretroviral activity and tolerability of efavirenz (EFV) + indinavir (IDV), versus EFV + zidovudine (ZDV) + lamivudine (3TC), versus IDV + ZDV + 3TC at 24 weeks [DMP266-006]. 12th World AIDS Conference. Abstract 22336, Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  141. Hetherington S, Steel HM, Lafon S, et al. Safety and tolerance of abacavir (1592, ABC) alone and in combination therapy of HIV infection. 12th World AIDS Conference. Abstract 12353. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  142. Balzarini J, Zhang H, Herdewijn P, et al. Intracellular metabolism and mechanism of antiretrovirus action of 9-(2-phosphonylmethoxy)adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci USA 1991; 88: 1499–1503.

    Article  PubMed  CAS  Google Scholar 

  143. Perno CF, Balestra E, Aquaro S, et al. Potent inhibition of human immunodeficiency virus and herpes simplex virus type 1 by 9-(2-phosphonylmethoxyethyl) adenine in primary macrophages is determined by drug metabolism, nucleotide pools, and cytokines. Mol Pharmacol 1996; 50: 359–366.

    PubMed  CAS  Google Scholar 

  144. Gong YF, Marshall DR, Srinivas RV, et al. Susceptibilities of zidovudine-resistant variants of human immunodeficiency virus type 1 to inhibition by acyclic nucleoside phosphonates. Antimicrob Agents Chemother 1994; 38: 1683–1687.

    Article  PubMed  CAS  Google Scholar 

  145. Arends S, van Halteren E, Kamp W, et al. Safety of 9-(2-phosphonylmethoxyethyl) adenine (PMEA) in patients with human immunodeficiency virus infection: a pilot study. Pharm World Sci. 1996; 18: 30–34.

    Article  PubMed  CAS  Google Scholar 

  146. Cundy KC, Barditch-Crovo P, Walter RE, et al. Clinical pharmacokinetics of adefovir in human immunodeficiency virus type 1-infected patients. Antimicrobial Agents and Chemotherapy. 1995; 39: 2401–2405.

    Article  PubMed  CAS  Google Scholar 

  147. Barditch-Crovo PA, Toole J, Hendrix CW, et al. Anti-human immunodeficiency virus (HIV) activity, safety, and pharmacokinetics of adefovir dipivoxil (9-[2-(bis-pivaloyloxymethyl)-phosphonyl-methoxyethyl]adenine) in HIV-infected patients. J Infect Dis. 1997; 176: 406–413.

    Article  PubMed  CAS  Google Scholar 

  148. Holme E, Greter J, Jacobson CE, et al. Carnitine deficiency induced by pivampicillin and pivmecillinam therapy. Lancet. 1989; ii: 469–473.

    Article  Google Scholar 

  149. Deeks SG, Collier A, Lalezari J, et al. The safety and efficacy of adefovir dipivoxil, a novel anti-HIV therapy, in HIV infected adults: a randomized, double-blind, placebo controlled trial. J Infect Dis. 1997; 176: 1517–1523.

    Article  PubMed  CAS  Google Scholar 

  150. Mulato AS, Lamy PD, Miller MD, et al. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from AIDS patients after prolonged adefovir dipivoxil therapy. An-timicrob Agents Chemother. 1998; 42: 1620–1628.

    CAS  Google Scholar 

  151. Kahn J, Lagakos S, Weng D et al. A multi-center, randomized, double-blind placebo controlled study of the efficacy and safety of adefovir dipivoxil (ADV) when added to standard antiretroviral therapy (ART). 38th Interscience Conference on Antimicrobial Agents and Chemotherapy Annual Meeting, San Diego, CA, September 24–27, 1998, Abstract I-108.

    Google Scholar 

  152. Yount SD, Britcher SF, Tran LO, et al. L-743,726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 1995; 39: 2602–2605.

    Article  Google Scholar 

  153. Winslow DL, Garber S, Reid C, et al. Selective conditions affect the evolution of specific mutations in the reverse transcriptase gene associated with resistance to DMP-266. AIDS 1996; 10: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  154. Riddler S, Kahn J, Hicks C, et al. Durable clinical anti-HIV-1 activity (72 weeks) and tolerability for efavirenz (DMP266) in combination with indinavir (IDV) [DMP266-003, Cohort IV]. 12th World AIDS Conference. Abstract 12359. Geneva, Switzerland, June 28-July 3,1998.

    Google Scholar 

  155. Fessel WJ, Haas DW, Delapenha RA, et al. A phase III, double-blind, placebo-controlled, multicenter study to determine the effectiveness and tolerability of the combination of efavirenz (EFV, SUSTIVA™, DMP 266) and indinavir (IDV) versus indinavir in HIV-1 infected patients receiving nucleoside analogue (NRTI) therapy at 24 weeks [DMP266-020]. 12th World AIDS Conference. Abstract 22343 Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  156. Mayers D, Jemsek J, Eyster E, et al. A double-blind, placebo-controlled study to assess the safety, tolerability, and antiretroviral activity of efavirenz (EFV, SUSTIVA ™, DMP in combination with open-label zi-dovudine (ZDV) and lamivudine (3TC) in HIV-1 infected patients [DMP 266-004]. 12th World AIDS Conference. Abstract 22340.Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  157. Mildvan D, Martin G, Eyster M, et al. Initial effectiveness and tolerability of nelfinavir (NFV) in combination with efavirenz (EFV, SUSTIVA™, DMP 266) in antiretroviral therapy naï ve or nucleoside analogue experienced HIV-1 infected patients: Characterization in a phase II, open-label, multicenter study at 16 weeks [DMP 266-024]. 12th World AIDS Conference. Abstract 22386 Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  158. St. Clair MH, Millard J, Rooney J, et al. In vitro antiviral activity of 141W94 (VX-478) in combination with other antiretrovirale. Antiviral Res. 1996; 29: 53–56.

    Article  PubMed  CAS  Google Scholar 

  159. Livingston DJ, Pazhanisamy S, Porter DJ, et al. Weak binding of VS-478 to human plasma proteins and implications for anti-human immunodeficiency virus therapy. J Infect Dis 1995; 172: 1238–1245.

    Article  CAS  Google Scholar 

  160. Partaledis JA, Yamaguchi K, Tisdale M, et al. In vitro selection and characterization of human immunodeficiency virus type 1 (HIV-1) isolates with reduced sensitivity to hydroxyethylamino Sulfonamide inhibitors of HIV-1 aspartyl protease. J Virol. 1995; 69: 5228–5235.

    PubMed  CAS  Google Scholar 

  161. Piscitelli S, Vogel S, Sadler B, et al. Effect of efavirenz (DMP 266) on the pharmacokinetics of 141W94 in HIV-infected patients. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 346. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  162. Haubrich R. Phase 2 study of amprenavir, a novel protease inhibitor, in combination with zidovudine/3TC. 12th World AIDS Conference. Abstract 12321. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  163. Murphy R, DeGruttola V, Gulick R, et al. 141W94 with or without zidovudine/3TC in patients with no prior protease inhibitor or 3TC therapy— ACTG 347. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 512. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  164. Mellors J, Lederman M, Haas D, et al. Antiretroviral effects of therapy combining abacavir with HIV protease inhibitors. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 4. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  165. Bart PA, Rizzardi GP, Gallant S, et al. Combination abacavir (1592, ABCyamprenavir (141W94) therapy in HIV-1 infected antiretroviral naï ve subjects with CD4 counts > 400 cells/mL and viral load > 5000 cop-ies/mL. 12th World AIDS Conference. Abstract 12204. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  166. Isaacs R, Havlir D, Pottage J, et al. Sixteen week follow-up of indinavir sulfate (IDV) administered q 8 hours (q8H) versus ql2H in combination with efavirenz (EFV). 12th World AIDS Conference. Abstract 12290. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  167. Skowron G, Leoung G, Dusek A, et al. Stavudine (d4T), nelfinavir (NFV), and nevirapine (NVP): preliminary safety, activity and pharmacokinetic (PK) interactions. 5th Conference on Retroviruses and Opportunistic Infections. Abstract 350. Chicago, IL, February 1-5, 1998.

    Google Scholar 

  168. Sahai J, Stewart F, Swick L, et al. Rifabutin reduces saquinavir plasma levels in HIV-infected patients. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract A27. New Orleans, LA, September 15-18, 1996.

    Google Scholar 

  169. Acosta EP, Henry K, Weiler D, et al. Indinavir pharmacokinetics and relationships between exposure and antiviral effect. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract A-15. Toronto, Canada, September 28-October 1, 1997.

    Google Scholar 

  170. Hoetelmans RMW, Heeswijk RPG, Meenhorst PL, et al. Plasma concentrations of saquinavir (SQV) determine HlV-1 RNA response over a 48-week period. 12th World AIDS Conference. Abstract 511/42261. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  171. Hoetelmans RMW, Reijers MHE, Weberling GF, et al. The rate of decline of HIV-1 RNA in plasma correlates with nelfinavir concentrations in plasma. 12th World AIDS Conference. Abstract 510/42259. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  172. Chodakewitz J, Deutsch P, Leavitt R, et al. Relationship between indinavir (IDV) pharmacokinetics and antiviral activity in plase I/II trials. 12th World AIDS Conference. Abstract 42266. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  173. Burger DA, Hoetelmans RMW, Mulder JW, et al. Low plasma levels of indinavir (IDV) are highly predictive of virological treatment failure in patients using IDV-containing triple therapy. 12th World AIDS Conference. Abstract 42275. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  174. Kerr B, Pithavala Y, Zhang M, et al. Virologic response-plasma drug concentration relationship in Phase III study of nelfinavir mesylate (Viracept®). 12th World AIDS Conference. Abstract 12304. Geneva, Switzerland, June 28-July 3, 1998.

    Google Scholar 

  175. Vanhove GF, Kastrissios H, Gries J-M, et al. Pharmacokinetics of saquinavir, zidovudine, and zalcitabine in combination therapy. Antimicrob Agents and Chemo 1997; 41: 2428–2432.

    CAS  Google Scholar 

  176. Ickovics JR, Meisler AW. Adherence in AIDS clinical trials: a framework for clinical research and clinical care. J Clin Epid. 1997; 5: 385–391.

    Article  Google Scholar 

  177. Broers B, Morabia A, Hirschel B. A cohort study drug users’ compliance with zidovudine treatment. Arch Inter Med. 1994; 154: 1121–1127.

    Article  CAS  Google Scholar 

  178. Eraker SA, Kirscht JP, Becker MH. Understanding and improving patient compliance. Ann Intern Med. 1984; 100: 258–268.

    PubMed  CAS  Google Scholar 

  179. Eisen SA, Miller DK, Woodward RS, et al. The effect of prescribed daily dose frequency on patient medication compliance. Arch Intern Med. 1990; 150: 1881–1884.

    Article  PubMed  CAS  Google Scholar 

  180. Besch CL. Compliance in clinical trials. AIDS 1995; 9: 1–10.

    Article  PubMed  CAS  Google Scholar 

  181. Morse EV, Simon PM, Walter J. Issues of recruitment, retention, and compliance in community-based clinical trials with traditionally underserved populations. App Nurs Res. 1995; 8: 8–14.

    Article  CAS  Google Scholar 

  182. Klaus BD, Grodesky MJ. Assessing and enhancing compliance with antiretroviral therapy. Nurse Pract. 1997; 22: 211–212, 215, 219.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Collier, A.C., Schwartz, M.A. (1999). Strategies for Second-Line Antiretroviral Therapy in Adults with HIV Infection. In: Mills, J., Volberding, P.A., Corey, L. (eds) Antiviral Chemotherapy 5. Advances in Experimental Medicine and Biology, vol 458. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4743-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4743-3_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7150-2

  • Online ISBN: 978-1-4615-4743-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics