Skip to main content

Adenosine and Ethanol

Is There a Caffeine Connection in the Actions of Ethanol?

  • Chapter
The “Drunken” Synapse

Abstract

The study of the actions of ethanol on the brain has generated a wide range of hypotheses concerning the mechanisms by which it alters neuronal activity. These include relatively non-specific actions (e.g., increases in membrane fluidity), that might ultimately alter the function of proteins embedded in the lipid bilayer. However more recent studies have focused on specific interactions between ethanol with membrane proteins, such as neurotransmitter receptors and voltage-gated ion channels. It has been hypothesized that the interaction is between ethanol and a hydrophobic pocket in the protein molecule (Figure 1). The enhancement or antagonism of the function of such membrane proteins has been posited to underlie the alterations in neural activity that ultimately result in the intoxicating effects of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauche F, Bourdeaux-Jaubert AM, Giudicelli Y, Nordmann R (1987) Ethanol alters the adenosine receptor-Ni-mediated adenylate cyclase inhibitory response in rat brain cortex in vitro. FEBS Lett 219:296–300.

    Article  PubMed  CAS  Google Scholar 

  • Bisserbe JC, Deckert J, Marangos P (1986) Autoradiographic localization of adenosine uptake sites in guinea pig brain using [3H]dipyridamole. Neurosci Lett 66:341–345.

    Article  PubMed  CAS  Google Scholar 

  • Bisserbe JC, Patel J, Marangos PJ (1985) Autoradiographic localization of adenosine uptake sites in rat brain using [3H]nitrobenzylthioinosine. J Neurosci 5:544–550.

    PubMed  CAS  Google Scholar 

  • Brundege JM, Dunwiddie TV (1995) The role of acetate as a potential mediator of the effects of ethanol in the brain. Neurosci Lett 186:214–218.

    Article  PubMed  CAS  Google Scholar 

  • Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391.

    Article  PubMed  CAS  Google Scholar 

  • Campisi P, Carmichael FJL, Crawford M, Orrego H, Khanna JM (1997) Role of adenosine in the ethanol-induced potentiation of the effects of general anesthetics in rats. Eur J Pharmacol. 325:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael FJ, Israel Y, Crawford M, Minhas K, Saldivia V, Sandrin S, Campisi P, Orrego H (1991) Central nervous system effects of acetate: contribution to the central effects of ethanol. J Pharmacol Exp Ther 259:403–408.

    PubMed  CAS  Google Scholar 

  • Carmichael FJ, Orrego H, Israel Y (1993) Acetate-induced adenosine mediated effects of ethanol. Alcohol Alcohol (Supplement) 2:411–418.

    CAS  Google Scholar 

  • Carmichael FJ, Saldivia V, Varghese GA, Israel Y, Orrego H (1988) Ethanol-induced increase in portal blood flow: role of acetate and A1-and A2-adenosine receptors. Amer J Physiol 255:G417–23.

    PubMed  CAS  Google Scholar 

  • Clark M, Dar MS (1988a) Mediation of acute ethanol-induced motor disturbances by cerebellar adenosine in rats. Pharmacol Biochem Behav 30:155–161.

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Dar MS (1988b) The effects of various methods of sacrifice and of ethanol on adenosine levels in selected areas of rat brain. J Neurosci Meth 25:243–249.

    Article  CAS  Google Scholar 

  • Clark M, Dar MS (1989a) Effect of acute ethanol on release of endogenous adenosine from rat cerebellar synaptosomes. J Neurochem 52:1859–1865.

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Dar MS (1989b) Effect of acute ethanol on uptake of [3H]adenosine by rat cerebellar synaptosomes. Alcohol Clin Exp Res 13:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Clark M, Dar MS (1989c) Release of endogenous glutamate from rat cerebellar synaptosomes: interactions with adenosine and ethanol. Life Sci 44:1625–1635.

    Article  PubMed  CAS  Google Scholar 

  • Coe IR, Dohrman DP, Constantinescu A, Diamond I, Gordon, AS (1996a) Activation of cyclic AMP-dependent protein kinase reverses tolerance of a nucleoside transporter to ethanol. J Pharmacol Exp Ther 276:365–369.

    PubMed  CAS  Google Scholar 

  • Coe IR, Yao L, Diamond I, Gordon AS (1996b) The role of protein kinase C in cellular tolerance to ethanol. J Biol Chem 271:29468–29472.

    Article  PubMed  CAS  Google Scholar 

  • Craig CG, White TD (1993) N-methyl-D-aspartate-and non-N-methyl-D-aspartate-evoked adenosine release from rat cortical slices: distinct purinergic sources and mechanisms of release. J Neurochem 60:1073–1080.

    Article  PubMed  CAS  Google Scholar 

  • Cullen N, Carlen PL (1992) Electrophysiological action of acetate, a metabolite of ethanol, on hippocampal dentate granule neurons: interaction with adenosine. Brain Res 588:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Fredholm BB, Ribeiro JA, Sebastiáo AM (1995) Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neurosci Lett 196:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Van der Ploeg I, Sebastiao AM, Ribeiro JA, Fredholm BB (1994) Evidence for functionally important adenosine A2A receptors in the rat hippocampus. Brain Res 649:208–216.

    Article  PubMed  CAS  Google Scholar 

  • Diamond I, Gordon AS (1997) Cellular and molecular neuroscience of alcoholism. Physiol Rev 77:1–20.

    PubMed  CAS  Google Scholar 

  • Diamond I, Wrubel B, Estrin W, Gordon A (1987) Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci (USA) 84:1413–1416.

    Article  CAS  Google Scholar 

  • Diao LH, Dunwiddie TV (1996) Interactions between ethanol, endogenous adenosine and adenosine uptake in hippocampal brain slices. J Pharmacol Exp Ther 278:542–546.

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1995) Acute and chronic effects of ethanol on the brain: interactions of ethanol with adenosine, adenosine transporters, and adenosine receptors. In: Pharmacological Effects of Ethanol on the Nervous System (Deitrich RA, Erwin VG, eds), pp. 147–161. Boca Raton: CRC Press.

    Google Scholar 

  • Dunwiddie TV, Diao LH (1994) Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther 268:537–545.

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao LH, Kim HO, Jiang JL, Jacobson KA (1997a) receptor-mediated responses in rat hippocampus. J Neurosci 17:607–614.

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao LH, Proctor WR (1997b) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682.

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Hoffer BJ (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol 69:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Hoffer BJ, Fredholm BB (1981) Alkylxanthines elevate hippocampal excitability: Evidence for a role of endogenous adenosine. Naunyn Schmiedebergs Arch Pharmacol 316:326–330.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Worth TS (1982) Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 220:70–76.

    PubMed  CAS  Google Scholar 

  • Fleming KM, Mogul DJ (1996) Adenosine A3 receptors potentiate hippocampal calcium current by a PKA-dependent/PKC-independent pathway. Drug Dev Res 37:121.

    Google Scholar 

  • Fredholm BB, Abbracchio MP, Bumstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) VI. Nomenclature and classification of purinoceptors. Pharm Rev 46:143–156.

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Fried G, Hedqvist P (1982) Origin of adenosine released from rat vas deferens by nerve stimulation. Eur J Pharmacol 79:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Wallman-Johansson A (1996) Effects of ethanol and acetate on adenosine production in rat hippocampal slices. Pharmacol Toxicol 79:120–123.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Zahniser NR, Weiner GR, Proctor WR, Dunwiddie TV (1985) Behavioral sensitivity to PIA in selectively bred mice is related to a number of A, adenosine receptors but not to cyclic AMP accumulation in brain slices. Eur J Pharmacol 111:133–136.

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Fyda DM (1991) Adenosine transport in nervous system tissues. In: Adenosine in the Nervous System (Stone TW ed), pp 1–20. London: Academic Press.

    Google Scholar 

  • Geiger JD, Johnston ME, Yago V (1988) Pharmacological characterization of rapidly accumulated adenosine by dissociated brain cells from adult rat. J Neurochem 51:283–291.

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Nagy JI (1984) Heterogeneous distribution of adenosine transport sites labeled by [3H]Nitrobenzylthioinosine in rat brain: An autoradiographic and membrane binding study. Brain Res Bull 13:657–666.

    Article  PubMed  CAS  Google Scholar 

  • Gordon AS, Collier K, Diamond I (1986) Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc Natl Acad Sci (USA) 83:2105–2108.

    Article  CAS  Google Scholar 

  • Gordon AS, Nagy L, Mochly-Rosen D, Diamond I (1990) Chronic ethanol-induced heterologous desensitization is mediated by changes in adenosine transport. Biochem Soc Symp 56:117–136.

    PubMed  CAS  Google Scholar 

  • Griffiths M, Beaumont N, Yao SYM, Sundaram M, Boumah CE, Davies A, Kwong FYP, Coe I, Cass CE, Young JD, Baldwin SA (1997) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nature Med 3:89–93.

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Greene RW (1988) Endogenous adenosine inhibits hippocampal CA1 neurones: further evidence from extra-and intracellular recording. Naunyn Schmiedebergs Arch Pharmacol 337:561–565.

    Article  PubMed  CAS  Google Scholar 

  • Hoehn K, White TD (1990) N-methyl-D-aspartate, kainate and quisqualate release endogenous adenosine from rat cortical slices. Neurosci 39:441–450.

    Article  CAS  Google Scholar 

  • Hoffman PL, Tabakoff B (1990) Ethanol and guanine nucleotide binding proteins: A selective interaction. FASEB J. 4:2612–2622.

    PubMed  CAS  Google Scholar 

  • Hynie S, Lanefelt F, Fredholm BB (1980) Effects of ethanol on human lymphocyte levels of cyclic AMP in vitro: potentiation of the response to isoproterehol, prostaglandin E2 or adenosine stimulation. Acta Pharmacol Toxicol 47:58–65.

    Article  CAS  Google Scholar 

  • Iles KE, Nagy LE (1995) Chronic ethanol feeding increases the quantity of Gαs-protein in rat liver plasma membranes. Hepatology 21:1154–1160.

    PubMed  CAS  Google Scholar 

  • Katims JJ, Annau Z, Snyder SH (1983) Interactions in the behavioral effects of methylxanthines and adenosine derivatives. J Pharmacol Exp Ther 227:167–173.

    PubMed  CAS  Google Scholar 

  • Kessey K, Mogul DJ (1997) NMDA-independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J Neurophysiology 78:1965–1972.

    CAS  Google Scholar 

  • Krauss SW, Ghirnikar RB, Diamond I, Gordon AS (1993) Inhibition of adenosine uptake by ethanol is specific for one class of nucleoside transporters. Mol Pharmacol 44:1021–1026.

    PubMed  CAS  Google Scholar 

  • Linden J (1991) Structure and function of A1 adenosine receptors. FASEB J. 5:2668–2676.

    PubMed  CAS  Google Scholar 

  • Luthin GR, Tabakoff B (1984) Activation of adenylate cyclase by alcohol requires the nucleotide-binding protein. J Pharmacol Exp Ther 228:579–587.

    PubMed  CAS  Google Scholar 

  • Mochly-Rosen D, Chang FH, Cheever L, Kim M, Diamond I, Gordon AS (1988) Chronic ethanol causes heterologous desensitization of receptors by reducing alpha-s messenger RNA. Nature 333:848–850.

    Article  PubMed  CAS  Google Scholar 

  • Mogul DJ, Adams ME, Fox AP (1993) Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons. Neuron 10:327–334.

    Article  PubMed  CAS  Google Scholar 

  • Motley SJ, Collins GGS (1983) Endogenous adenosine inhibits excitatory transmission in the rat olfactory cortex slice. Neuropharmacol 22:1081–1086.

    Article  CAS  Google Scholar 

  • Nagy LE, DeSilva SEF (1994) Adenosine A, receptors mediate chronic ethanol-induced increases in receptor-stimulated cyclic AMP in cultured hepatocytes. Biochem J 304:205–210.

    PubMed  CAS  Google Scholar 

  • Nagy LE, Diamond I, Casso DJ, Franklin C, Gordon AS (1990) Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem 265:1946–1951.

    PubMed  CAS  Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1-and A2-selective adenosine agonists and antagonists: Evidence for synergism and antagonism. J Pharmacol Exp Ther 259:286–294.

    PubMed  CAS  Google Scholar 

  • Olah ME, Stiles GL (1995) Adenosine receptor subtypes: characterization and therapeutic regulation. Ann Rev Pharmacol Toxicol 35:581–606.

    Article  CAS  Google Scholar 

  • Ongini E, Fredholm BB (1996) Pharmacology of adenosine A2A receptors. Trends Pharmacol 17:364–372.

    CAS  Google Scholar 

  • Orrego H, Carmichael FJ, Saldivia V, Giles HG, Sandrin S, Israel Y (1988) Ethanol-induced increase in portal blood flow: role of adenosine. Amer J Physiol 254:G495–G501

    PubMed  CAS  Google Scholar 

  • Phillis JW, O’Regan MH, Perkins LM (1992) Actions of ethanol and acetate on rat cortical neurons: ethanol/adenosine interactions. Alcohol 9:541–546.

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Ziang ZG, Chelack BJ (1980) Effects of ethanol on acetylcholine and adenosine efflux from in vivo rat cerebral cortex. J Pharm Pharmacol 32:871–872.

    Article  PubMed  CAS  Google Scholar 

  • Rabe CS, Giri PR, Hoffman PL, Tabakoff B (1990) Effect of ethanol on cyclic AMP levels in intact PC12 cells. Biochem Pharmacol 40:565–571.

    Article  PubMed  CAS  Google Scholar 

  • Rabin RA (1990) Direct effects of chronic ethanol exposure on beta-adrenergic and adenosine-sensitive adenylate cyclase activities and cyclic AMP content in primary cerebellar cultures. J Neurochem 55:122–128.

    Article  PubMed  CAS  Google Scholar 

  • Rabin RA, Fiorella D, Van Wylen DG (1993) Role of extracellular adenosine in ethanol-induced desensitization of cyclic AMP production. J Neurochem 60:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Rabin RA, Molinoff PB (1981) Activation of adenylate cyclase by ethanol in mouse striatal tissue. J Pharmacol ExpTher 216:129–134.

    CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 48:622–630.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA, Dichter MA (1989) Extracellular cAMP accumulation and degradation in rat cerebral cortex in dissociated cell culture. J Neurosci 9:2654–2663.

    PubMed  CAS  Google Scholar 

  • Rosenberg PA, Li Y (1995) Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by β-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res 692:227–232.

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Lee JM, Hoffman PL, Tabakoff B (1987) Effects of chronic ethanol treatment on the beta-adrenergic receptor-coupled adenylate cyclase system of mouse cerebral cortex. J Neurochem 48:1817–1822.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson G, Scholfield CN (1986) Effects of adenosine uptake blockers and adenosine on evoked potentials of guinea-pig olfactory cortex. Pflügers Arch 406:25–30.

    Article  PubMed  Google Scholar 

  • Sapru MK, Diamond I, Gordon AS (1994) Adenosine receptors mediate cellular adaptation to ethanol in NG108-15 cells. J Pharmacol Exp Ther 271:542–548.

    PubMed  CAS  Google Scholar 

  • Silinsky EM, Hubbard JI (1973) Release of ATP from rat motor nerve terminals. Nature 243:404–405.

    Article  PubMed  CAS  Google Scholar 

  • Smolen TN, Smolen A (1993a) Down-regulation of adenosine A2 receptors in long-sleep mice following chronic ethanol administration. Alcohol Clin Exp Res 17:498 (Abstract)

    Google Scholar 

  • Smolen TN, Smolen A, Han PC (1993b) Upregulation of adenosine A, receptors following chronic purinergic agonist and antagonist administration in mice. FASEB J 7:A255 (Abstract)

    Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci (USA) 78:3260–3264.

    Article  CAS  Google Scholar 

  • Stephenson PE (1977) Physiologic and psychotropic effects of caffeine on man. A review. J Amer Dietetic Ass 71:240–247.

    CAS  Google Scholar 

  • Wannamaker VL, Nagy LE (1995) Equilibrative adenosine transport in rat hepatocytes after chronic ethanol feeding. Alcohol Clin Exp Res 19:735–740.

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang H, Münkle M (1997) Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur J Pharmacol 323:127–131.

    Article  Google Scholar 

  • Yao SY, Ng AM, Muzyka WR, Griffiths M, Cass CE, Baldwin, SA, Young JD (1997) Molecular cloning and functional characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J Biol Chem 272:28423–28430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunwiddie, T.V. (1999). Adenosine and Ethanol. In: Liu, Y., Hunt, W.A. (eds) The “Drunken” Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4739-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4739-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7148-9

  • Online ISBN: 978-1-4615-4739-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics