Skip to main content

Molecular Targets Underlying Ethanol-Mediated Reduction of Hormone Release from Neurohypophysial Nerve Terminals

  • Chapter

Abstract

In developing a model system in which to study the molecular basis for the acute and chronic actions of ethanol in the nervous system, our basic philosophy has been: 1) to work with a relevant molecular target (i.e., a mediator of a behavioral or physiological consequence of ethanol ingestion), which is 2) amenable to analysis at the molecular level, and in which 3) we can identify the biophysical parameters responsible for acute modulation by the drug. It will also be possible to follow alterations in the function and ethanol response of this target during chronic exposure of the animal to ethanol, and the development of various forms of tolerance in those systems or behaviors subserved by the target molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrantes FJ (1993) Structural-functional correlates of the nicotinic acetylcholine receptor and its lipid microenvironment. FASEB J 7:1460–1467.

    PubMed  CAS  Google Scholar 

  • Barrett JN, Magleby KL, Pallota BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 331:211–230.

    PubMed  CAS  Google Scholar 

  • Behrens MI, Oberhauser A, Bezanilla F, Latorre R (1989) Batrachotoxin-modified sodium channels from squid optic nerve in planar bilayers. Ion conduction and gating properties. J Gen Physiol 93:23–41.

    CAS  Google Scholar 

  • Bergland RM, Torack RM (1969) An electron microscopic study of the human infundibulum. Z Zeilforsch 99:1–12.

    Article  CAS  Google Scholar 

  • Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P (1989) Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflügers Arch 415:262–268.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein MJ, Russell JT, H Gainer (1982) Biosynthesis of posterior pituitary hormones. In: Frontiers in Neuroendocrinology Vol 7 (Ganong WF, Martini L, eds), pp. 31–43. New York, NY: Raven Press.

    Google Scholar 

  • Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding “Maxi” calcium-activated potassium channels. Science 261:221–224.

    Article  PubMed  CAS  Google Scholar 

  • Chang HM, Reitstetter R, Mason RP, Gruener R (1995) Attenuation of channel kinetics and conductance by cholesterol: An interpretation using structural stress as a unifying concept. J Membr Biol 143:51–63.

    PubMed  CAS  Google Scholar 

  • Chu B, Dopico AM, Lemos JR and Treistman SN (1998) Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers. Mol. Pharmacol. 54:397–406.

    PubMed  CAS  Google Scholar 

  • DiChiara TJ, Reinhart PH (1995) Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca2+-activated K+ channels. J Physiol 489:403–418.

    PubMed  CAS  Google Scholar 

  • Dopico AM, Kirber MT, Singer JV, Walsh JV (1994) Membrane stretch directly activates large conductance Ca++-activated K+ channels in smooth muscle cells freshly dissociated form rabbit mesenteric artery. Am J Hypert 7:82–89.

    CAS  Google Scholar 

  • Dopico AM, Lemos JR, Treistman SN (1995) Alcohol and the release of vasopressin and oxytocin. In: Alcohol and Hormones (Watson RR, ed) pp. 209–226. Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Dopico AM, Lemos JR, Treistman SN ( 1996) Ethanol increases the activity of large conductance, Ca2+-activated K+ channels in isolated neurohypophysial terminals. Mol Pharmacol 49:40–48.

    PubMed  CAS  Google Scholar 

  • Dopico AM, Anantharam V, Treistman, SN (1998) Ethanol increases the activity of Ca++-dependent K+ (mslo) channels: Functional interaction with cytosolic Ca++. J Pharmacol Exp Ther 284:258–2

    PubMed  CAS  Google Scholar 

  • Ellena JF, Blazing MA, McNamee MG (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochem 22:5523–5535.

    Google Scholar 

  • Kirber MT, Ordway RW, Clapp LH, Walsh, JV, Jr, Singer JJ (1992) Both membrane stretch and fatty acids directly activate large conductance Ca2+-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297:24–28.

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski GP(1990) Alcohol-neuroendocrine interactions: vasopressin and oxytocin. In: Biochemistry and Physiology of Substances Abuse Vol 2 (Watson RR, ed) pp. 257–277. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lederis K (1965) An electron microscopic study of the human neurohypophysis. Z Zellforsch 65:847–868.

    Article  PubMed  CAS  Google Scholar 

  • Magleby KL, Pallotta, BS (1983) Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol 344:585–604.

    PubMed  CAS  Google Scholar 

  • McManus O (1991) Calcium-activated potassium channels: Regulation by calcium. J Bioenerg Biomembr 23:537–560.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Alvarez O, Vergara C, Latorre R (1985) Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers. J Membr Biol 83:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski E, Latorre R (1983) Gating kinetics of Ca++-activated K+ channels from rat muscle incorporated into planar lipid bilayers. J Gen Physiol 82:511–542.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann J (1977) Ultrastructural morphometry of the rat neurohypophysis. J Anat 123:213–218.

    PubMed  CAS  Google Scholar 

  • Pickering BT, Swann RW, Gonzalez CB (1986) Biosynthesis and processing of neurohypophysial hormones. In: Neuropeptides and Behavior Vol 2, pp. 1–22. Oxford: Pergamon Press.

    Google Scholar 

  • Reichin S (1992) Neuroendocrinology. In: William’s Textbook of Endocrinology, 8th ed (Wilson JD, Foster DW, eds), Ch 5 pp. 135–220 Philadelphia, PA: Saunders Co.

    Google Scholar 

  • Scheithauer BW, Horvath E, Kovacs K (1992) Ultrastructure of the neurohypophysis. Microsc Tech 20:177–186.

    Article  CAS  Google Scholar 

  • Schmale H, Fehr S, Richter D (1987) Vasopressin biosynthesis: From gene to peptide hormone. Kidney Int 32(Suppl 21):8–13.

    Google Scholar 

  • Singer JJ, Walsh, JV (1987) Characterization of calcium-activated potassium channels in single smooth muscle cells using the patch-clamp technique. Pflugers Arch 408:98–111.

    Article  PubMed  CAS  Google Scholar 

  • Stopa EG, Kuo LeBlanc V, Hill DH, Anthony ELP (1993) A general overview of the anatomy of the neurohypophysis. In: Ann NY Acad Sci, Vol 689:The neurohypophysis: a window on brain function. (North WG et al. eds). pp. 6–15. New York, NY.

    Google Scholar 

  • Toro L, Ramos-Franco J, Stefani E (1990) GTP-dependent regulation of myometrial KCA channels incorporated in lipid bilayers. J Gen Physiol 96:373–394.

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Thorn P, Lemos JR (1992) A novel large-conductance Ca++-activated potassium channel and current in nerve terminals of the rat neurohypophysis. J Physiol 457:47–74.

    PubMed  CAS  Google Scholar 

  • Wang X, Dayanithi G, Lemos JR, Nordmann JJ, Treistman SN (1991a) Calcium currents and peptide release from neurohypophysial terminals are inhibited by ethanol. J Pharmacol Exp Ther 259:705–711.

    PubMed  CAS  Google Scholar 

  • Wang X, Lemos JR, Dayanithi G, Nordmann JJ, Treistman SN (1991b) Ethanol reduces vasopressin release by inhibiting calcium currents in nerve terminals. Brain Res 551:338–341.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang G, Lemos JR, Treistman SN (1994) Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+ channel in neurohypophysial terminals. J Neurosci 14:5453–5460.

    PubMed  CAS  Google Scholar 

  • Woodbury DJ, Miller C (1990) Nystatin-induced liposome fusion: a versatile approach to ion channel reconstitution into planar bilayers. Biophys J 58:833–839.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Treistman, S.N., Chu, B., Dopico, A.M. (1999). Molecular Targets Underlying Ethanol-Mediated Reduction of Hormone Release from Neurohypophysial Nerve Terminals. In: Liu, Y., Hunt, W.A. (eds) The “Drunken” Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4739-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4739-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7148-9

  • Online ISBN: 978-1-4615-4739-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics