Skip to main content

Complexity, Retinoid-Responsive Gene Networks, and Bladder Carcinogenesis

  • Chapter
Advances in Bladder Research

Abstract

Carcinogenesis involves inactivation or subversion of the normal controls of proliferation, differentiation, and apoptosis. However, these controls are robust, redundant, and interlinked at the gene expression levels, regulation of mRNA lifetimes, transcription, and recycling of proteins. One of the central systems of control of proliferation, differentiation and apoptosis is retinoid signaling. The hRARαnuclear receptor occupies a central position with respect to induction of gene transcription in that when bound to appropriate retinoid ligands, its homodimers and heterodimers with hRXRαregulate the transcription of a number of retinoid-responsive genes. These include genes in other signaling pathways, so that the whole forms a complex network. In this study we showed that simple, cause-effect interpretations in terms of hRARαgene transcription being the central regulatory event would not describe the retinoid-responsive gene network.

A set of cultured bladder-derived cells representing different stages of bladder tumorigenesis formed a model system. It consisted of 2 immortalized bladder cell lines (HUC-BC and HUC-PC), one squamous cell carcinoma cell line (SCaBER), one papilloma line (RT4), and 4 transitional cell carcinomas (TCC-Sup, 5637, T24, J82) of varying stages and grades. This set of cells were used to model the range of behaviors of bladder cancers. Relative gene expression before (constitutive) and after treatment with 10 µM all-trans- retinoic acid (aTRA) was measured for androgen and estrogen receptor; a set of genes involved with retinoid metabolism and action, hRAR α nd β, hRXR α and β CRBP, CRABP I and II; and for signaling genes that are known to be sensitive to retinoic acid, EGFR, cytokine MK, ICAM I and transglutaminase. The phenotype for inhibition of proliferation and for apoptotic response to both aTRA and the synthetic retinoid 4-HPR was determined. Transfection with a CAT-containing plasmid containing an aTRA-sensitive promoter was used to determine if the common retinoic acid responsive element (RARE)-dependent pathway for retinoid regulation of gene expression was active. Each of the genes selected is known from previous studies to react to aTRA in a certain way, either by up- or down-regulation of the message and protein.

A complex data set not readily interpretable by simple cause and effect was observed. While all cell lines expressed high levels of the mRNAs for hRXRαand β that were not altered by treatment with exogenous aTRA, constitutive and stimulated responses of the other genes varied widely among the cell lines. For example, CRABP I was not expressed by J82, T24, 5637 and RT4, but was expressed at low levels that did not change in SCaBER and at moderate levels that decreased, increased, or decreased sharply in HUC-BC, TCC-Sup and HUC-PC, respectively. The expression of hRARα, which governs the expression of many retinoid-sensitive genes, was expressed at moderate to high levels in all cell lines, but in some it was sharply upregulated (TCC-Sup, HUC-PC and J82), remained constant (5637 and HUC-BC), or was down-regulated (SCaBER, T24 and RT4). The phenotypes for inhibition of proliferation showed no obvious relationship to the expression of any single gene, but cell lines that were inhibited by aTRA (HUC-BC and TCC-Sup) were not sensitive to 4-HPR, and vice versa. One line (RT4) was insensitive to either retinoid. Transfection showed very little retinoid-stimulated transfection of the CAT reporter gene with RT4 or HUC-PC. About 2-fold enhancement transactivation was observed with SCaBER, HUC-BC, J82 and T24 cells and 3–8 fold with 5637, TCC-Sup cells. In HUC-BC, a G to T point mutation was found at position 606 of the hRARα gene. This mutation would substitute tyrosine for asparagine in a highly conserved domain.

These data indicate that retinoid signaling is probably a frequent target of inactivation in bladder carcinogenesis. However, it seems this inactivation is a random process, but the strongly interlinked nature of signaling pathways can lead to unexpected manifestations. The phenotype of a cell is probably determined more by a neural net type of calculation involving numerous inputs (risk factors) than it is by strict cause and effect, i.e. inactivation of a particular gene may lead to widespread alterations in the activities of genes linked to it. A novel perspective based upon complexity for the investigation of carcinogenesis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzler, K. W. and Vogelstein, B.: Lessons from hereditary colorectal cancer. Cell, 87: 159, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Shackney, S. E. and Shankey, T. V.: Common patterns of genetic evolution in human solid tumors. Cytometry, 29: 1, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Prehn, R. T.: Cancers beget mutations versus mutations beget cancers. Cancer Res., 54: 5296, 1994.

    PubMed  CAS  Google Scholar 

  4. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., and Bissell, M. J.: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol., 137: 231, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Wingo, P. A., Tong, T., and Bolden, S.: Cancer Statistics, 1995. CA Cancer J. Clin., 45: 8, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Whelan, S. L. and Ferlay, J.: Cancer Incidence in Five Continents. Age-specific and standardized incidence rates. IARC Sci. Publ. 178, 1992.

    Google Scholar 

  7. Cartwright, R. A.: Screening workers exposed to suspect bladder carcinogens. J. Occup. Med., 28: 1017, 1986.

    Article  PubMed  CAS  Google Scholar 

  8. Heney, N. M., Ahmed, S., Flanagan, M. J., Frable, W., Corder, M. P., Hafermann, M. D., and Hawkins, I. R.: Superficial bladder cancer: progression and recurrence. J. Urol., 130: 1083, 1983.

    PubMed  CAS  Google Scholar 

  9. Weinberg, R.: Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res., 49: 3713, 1989.

    PubMed  CAS  Google Scholar 

  10. Pientä, K., Partin, A., and Coffey, D. S.: Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res., 49: 2525, 1989.

    PubMed  Google Scholar 

  11. Tzen, C., Estervig, D. N., Minoo, P., Filipak, M., Maercklein, P., Hoerl, B., and Scott, R.: Differentiation, cancer, and anticancer activity. Biochem. Cell Biol., 66: 478, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Heldin, C., Betscholz, C., Claesson-Welsh, l., and Westermark, B.: Subversion of growth regulatory pathways in malignant transformation. Biochim. Biophys. Acta, 907: 219, 1987.

    PubMed  CAS  Google Scholar 

  13. Couture, J. and Hansen, M.: Recessive genes in tumorigenesis. Cancer Bull., 43: 41, 1991.

    Google Scholar 

  14. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W.: Participation of p53 protein in the cellular response to DNA damage. Cancer Res., 51: 6304, 1991.

    PubMed  CAS  Google Scholar 

  15. Ruoslahti, E. and Yamaguchi, Y.: Proteoglycans as modulators of growth factors. Cell, 64: 867, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Nathan, C. and Sporn, M.: Cytokines in context. J. Cell Biol. 113: 981, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Harris, C. C.: Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res., 51: 5023s, 1991.

    PubMed  CAS  Google Scholar 

  18. Trosko, J. E., Chang, C. C., Madhukar, B. V., and Oh, S. Y.: Modulators of gap junction function: the scientific basis of epigenetic toxicology. In Vitro Toxicology, 3: 9, 1990.

    CAS  Google Scholar 

  19. Cuthill, S.: Cellular epigenetics and the origin of cancer. BioEssays, 16: 393, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Hemstreet, G. P., Rao, J. Y., Hurst, R. E., Bonner, R. B., Jones, P. L., Vaidya, A. M., Fradet, Y., Moon, R. C., and Kelloff, G. J.: Intermediate endpoint biomarkers for chemoprevention. J. Cell. Biochem., Suppl. 16l: 93, 1992.

    Article  Google Scholar 

  21. Rao, J. Y., Hemstreet, G. P., Hurst, R. E., Bonner, R. B., Jones, P. L., Min, K. W., and Fradet, Y.: Alterations in phenotypic biochemical markers in bladder epithelium during tumorigenesis. Proc. Natl. Acad. Sci. USA., 90: 8287, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Koss, L. G.: Tumors of the urinary tract and prostate. In L.G. Koss (Ed.), Diagnostic cytology and its histologic basis. Philadelphia: J.B. Lippincott, 1979. Pp. 749.

    Google Scholar 

  23. Norming, U., Nyman, C., and Tribukait, B.: Comparative flow and cytometric deoxyribonucleic acid studies on exophytic tumor and random mucosal biopsies in untreated carcinoma of the bladder. J. Urol., 142: 1442, 1989.

    PubMed  CAS  Google Scholar 

  24. Tsai, Y. C., Simoneau, A. R., Spruck, C. H. III, Nichols, P. W., Steven, K., Buckley, J. D., and Jones, P. A.: Mosaicism in human epithelium: Macroscopic monoclonal patches cover the urothelium. J. Urol., 153: 1697, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Spruck, C. H. III, Ohneseit, P. F., Gonzalez-Zulueta, M., Esrig, D., Miyao, N., Tsai, Y. C., Lerner, S. P., Schnitte, C., Yang, A. S., Cote, R., Dubeau, L., Nichols, P. W., Hermann, G. G., Steven, K., Horn, T., Skinner, D. G., and Jones, P. A.: Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res., 54: 784, 1994.

    PubMed  CAS  Google Scholar 

  26. Hemstreet, G. P., Rao, J. Y., Hurst, R. E., Bonner, R. B., Mellott, J., and Rooker, G. M.: Biomarkers in monitoring for efficacy of immunotherapy and chemoprevention of bladder cancer with dimethylsulfoxide. Cancer Detec. Prev., 1998.(in press)

    Google Scholar 

  27. Presti, J. C. Jr., Reuter, V. E., Galan, T., Fair, W. R., and Cordon-Cardo, C.: Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res., 51: 5405, 1991.

    PubMed  Google Scholar 

  28. Farrow, G. M.: Urine cytology in the detection of bladder cancer: a critical approach. J. Occup. Med., 32: 817, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Prehn, R. T.: Many growth factors may not be growth factors. Cancer Res., 52: 501, 1992.

    PubMed  CAS  Google Scholar 

  30. Cohen, S. M. and Ellwein, L. B.: Genetic errors, cell proliferation, and carcinogenesis. Cancer Res., 51: 6493, 1991.

    PubMed  CAS  Google Scholar 

  31. Elliott, B., Ostman, A., Westermark, B., and Rubin, K.: Modulation of growth factor responsiveness of murine mammary carcinoma cells by cell matrix interactions: correlation of cell proliferation and spreading. J. Cell. Physiol., 152: 292, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Gudas, L. J.: Retinoids, retinoid-responsive genes, cell differentiation, and cancer. Cell Growth Differ., 3: 655, 1992.

    PubMed  CAS  Google Scholar 

  33. Greenwald, P., Kelloff, G., Whitman-Burch, C., and Kramer, B.: Chemoprevention. CA Cancer J. Clin., 45: 31, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Lipman, S., Heyman, R., Kurie, J., Benner, S., and Hong, K.: Retinoids and chemoprevention: Clinical and basic studies. J. Cell. Biochem., 22: 1, 1995.

    Article  Google Scholar 

  35. McCormick, A. M. and Napoli, J. L.: Identification of 5,6-epoxyretinoic acid as an endogenous retinol metabolite. J. Biol. Chem., 257: 1730, 1982.

    PubMed  CAS  Google Scholar 

  36. Napoli, J. L. and Race, K. R.: Biogenesis of retinoic acid from beta-carotene. Differences between the metabolism of beta-carotene and retinal. J. Biol. Chem., 263: 17372, 1988.

    PubMed  CAS  Google Scholar 

  37. DeLuca, L. H. and Shapiro, S. S.: Modulation of cellular interactions by vitamin A and derivatives (retinoids). Ann. N. Y. Acad. Sci., 359: 14, 1981.

    Article  Google Scholar 

  38. Ong, D. E., Crow, J. A., and Chytil, F.: Radioimmunochemical determination of cellular retinol- and cellular retinoic acid-binding proteins in cytosols of rat tissues. J. Biol. Chem., 257: 13385, 1982.

    PubMed  CAS  Google Scholar 

  39. Sani, B. and Corbett, T.: Retinoic acid-binding protein in normal tissues and experimental tumors. Cancer Res., 27: 209, 1977.

    Google Scholar 

  40. Giguere, V., Lyn, S., Yip, P., Siu, C. H., and Amin, S.: Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA., 87: 6233, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Adamson, P. C., Boylan, J. F., Balis, F. M., Murphy, R. F., Godwin, K. A., Gudas, L. J., and Poplack, D. G.: Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein. Cancer Res., 267: 21486, 1992.

    Google Scholar 

  42. Boylan, J. F. and Gudas, L. J.: The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J. Biol. Chem., 267: 21486, 1992.

    PubMed  CAS  Google Scholar 

  43. Giguere, V.: Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocrine Reviews 15: 61, 1994.

    PubMed  CAS  Google Scholar 

  44. Sporn, M. B. and Roberts, A. B.: Role of retinoids in differentiation and carcinogenesis. Cancer Res., 43: 3034, 1983.

    PubMed  CAS  Google Scholar 

  45. Pfahl, M., Apfel, R., Bendik, I., Fanjul, A., Graupner, G., Lee, M. O., La-Vista, N., Lu, X. P., Piedrafita, J., Ortiz, M. A., and et al: Nuclear retinoid receptors and their mechanism of action. Vitamins & Hormones, 49: 327, 1994.

    Article  CAS  Google Scholar 

  46. Chambon, P.: The retinoid signaling pathway: molecular and genetic analyses. Semin. Cell Biol., 5: 115, 1994.

    CAS  Google Scholar 

  47. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and et al: The nuclear receptor superfamily: the second decade. Cell, 83: 835, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Giguere, V., Ong, E. S., Segui, P., and Evans, R. M.: Identification of a receptor for the morphogen retinoic acid. Nature, 330: 624, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Benbrook, D., Lernhardt, E., and Pfahl, M.: A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature, 333: 669, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Heyman, R. A., Mangelsdorf, D. J., Dyck, J. A., Stein, R. B., Eichele, G., Evans, R. M., and Thaller, C.: 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell, 68: 397, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Leid, M., Kastner, P., Lyons, R., Nakshatri, H., Saunders, M., Zacharewski, T., Chen, J. Y., Staub, A., Gamier, J. M., Mader, S., and et al: Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently [published erratum appears in Cell 1992 Nov 27;71(5): following 886]. Cell, 68: 377, 1992.

    Article  PubMed  CAS  Google Scholar 

  52. Mangelsdorf, D. J. and Evans, R. M.: The RXR heterodimers and orphan receptors. Cell, 83: 841, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Pfahl, M.: Vertebrate receptors: molecular biology, dimerization and response elements. Semin. Cell Biol., 5: 95, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Lehmann, J. M., Zhang, X. K., Graupner, G., Lee, M. O., Hermann, T., Hoffmann, B., and Pfahl, M.: Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching. Mol. Cell. Biol., 13: 7698, 1993.

    PubMed  CAS  Google Scholar 

  55. Salbert, G., Fanjul, A., Piedrafita, F. J., Lu, X. P., Kim, S. J., Tran, P., and Pfahl, M.: Retinoic acid receptors and retinoid X receptor-alpha down-regulate the transforming growth factor-beta 1 promoter by antagonizing AP-1 activity. Mol. Endocrinol., 7: 1347, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Fanjul, A., Dawson, M. I., Hobbs, P. D., Jong, L., Cameron, J. F., Harlev, E., Graupner, G., Lu, X. P., and Pfahl, M.: A new class of retinoids with selective inhibition of AP-1 inhibits proliferation. Nature, 372: 107, 1994.

    Article  PubMed  CAS  Google Scholar 

  57. Graupner, G., Malle, G., Maignan, J., Lang, G., Prunieras, M., and Pfahl, M.: 6′-substituted naphthalene-2-carboxylic acid analogs, a new class of retinoic acid receptor subtype-specific ligands. Biochem. Biophys. Res. Commun., 179: 1554, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. Mehta, K., McQueen, T., Neamati, N., Collins, S., and Andreeff, M.: Activation of retinoid receptors RARα and RXRα induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ., 7: 179, 1996.

    PubMed  CAS  Google Scholar 

  59. Moon, R. C., McCormick, D. L., and Mehta, R. G.: Inhibition of carcinogenesis by retinoids. Cancer Res., 43: 2469s, 1983.

    PubMed  CAS  Google Scholar 

  60. Ponzoni, M., Bocea, P., Chiesa, V., Decensi, A., Pistoia, V., Raffaghello, L., Rozzo, C., and Montaldo, P. G.: Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res., 55: 853, 1995.

    PubMed  CAS  Google Scholar 

  61. Delia, D., Aiello, A., Formelli, F., Fontaneila, E., Costa, A., Miyashita, T., Reed, J. C., and Pierotti, M. A.: Regulation of apoptosis induced by the retinoid N-(4-hydroxyphenyl) retinamide and effect of deregulated bcl-2. Blood, 85: 359, 1995.

    PubMed  CAS  Google Scholar 

  62. Kim, Y. H., Dohi, D. F., Han, G. R., Zou, C. P., Oridate, N., Walsh, G. L., Nesbitt, J. C., Xu, X. C., Hong, W. K., Lotan, R., and et al.: Retinoid refractoriness occurs during lung carcinogenesis despite functional retinoid receptors. Cancer Res., 55: 5603, 1995.

    PubMed  CAS  Google Scholar 

  63. Li, J. J., Dong, Z., Dawson, M. I., and Colburn, N. H.: Inhibition of tumor promoter-induced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element. Cancer Res., 56: 483, 1996.

    PubMed  CAS  Google Scholar 

  64. Shao, Z. M., Dawson, M. I., Li, X. S., Rishi, A. K., Sheikh, M. S., Han, Q. X., Ordonez, J. V., Shroot, B., and Fontana, J. A.: p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Oncogene, 11: 493, 1995.

    PubMed  CAS  Google Scholar 

  65. Sheikh, M. S., Shao, Z. M., Li, X. S., Ordonez, J. V., Conley, B. A., Wu, S., Dawson, M. I., Han, Q. X., Chao, W. R., and Quick, T.: N-(4-hydroxyphenyl)retinamide (4-HPR)-mediated biological actions involve retinoid receptor-independent pathways in human breast carcinoma. Carcinogenesis, 16: 2477, 1995.

    Article  PubMed  CAS  Google Scholar 

  66. Moon, R. C., McCormick, D. L., Becci, P. J., Shealy, Y. F., Frickel, F., Paust, J., and Sporn, M. B.: Influence of 15 retinoic acid amides on urinary bladder carcinogenesis in the mouse. Carcinogenesis, 3: 1469, 1982.

    Article  PubMed  CAS  Google Scholar 

  67. Moon, R. C., Kelloff, G. J., Detrisac, C. J., Steele, V. E., Thomas, C. F., and Sigman, C. C.: Chemoprevention of OH-BBN-induced bladder cancer in mice by oltipraz, alone and in combination with 4-HPR and DFMO. Anticancer Res. 14: 5, 1994.

    PubMed  CAS  Google Scholar 

  68. Moon, R. C., Detrisac, C. J., Thomas, C. F., and Kelloff, G. J.: Chemoprevention of experimental bladder cancer. J. Cell. Biochem. Suppl., 161: 134, 1992.

    Article  Google Scholar 

  69. Studer, U. E., Biedermann, C., Chollet, D., Karrer, R., Kraft, R., Toggenburg, H., and Vonbank, F.: Prevention of recurrent superficial bladder tumors by oral etretinate: preliminary results of a randomized, double blind multicenter trial in Switzerland. J. Urol., 131: 47, 1984.

    PubMed  CAS  Google Scholar 

  70. Studer, U. E., Jenzer, S., Biedermann, C., Chollet, D., Kraft, R., Von Toggenburg, H., and Vonbank, F.: Adjuvant treatment with a vitamin A analogue (etretinate) after transurethral resection of superficial bladder tumors — Final analysis of a prospective, randomized multicenter trial in Switzerland. Eur. Urol., 28: 284, 1995.

    PubMed  CAS  Google Scholar 

  71. Decensi, A., Curotto, A., Bruno, S., Costantini, M., Torrisi, R., Gatteschi, B., Cussotto, M., Pizzorno, R., Quattrini, S., Repetto, U., and et al.: DNA flow cytometry as a surrogate end-point in patients with superficial bladder cancer treated with 4-HPR. Eur. J. Cancer Prev., 3: 377, 1994.

    Article  PubMed  CAS  Google Scholar 

  72. Lamm, D. L., Riggs, D. R., Shriver, J. S., VanGilder, P. F., Rach, J. F., and DeHaven, J. I.: Megadose vitamins in bladder cancer: A double-blind clinical trial. J. Urol., 151: 21, 1994.

    PubMed  CAS  Google Scholar 

  73. Bookland, E., Reznikoff, C. A., Lindstrom, M., and Swaminathan, S.: Induction of thioguanine-resistant mutations in human uroepithelial cells by 4-aminobiphenyl and its N-hydroxyderivatives. Cancer Res., 52: 1615, 1992.

    PubMed  CAS  Google Scholar 

  74. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65: 55, 1983.

    Article  PubMed  CAS  Google Scholar 

  75. Glover, J. F., Irwin, J. T., and Darbre, P. D.: Interaction of phenol red with estrogenic and antiestrogenic action on growth of human breast cancer cells ZR-75-1 and T-47-D. Cancer Res., 48: 3693, 1988.

    PubMed  CAS  Google Scholar 

  76. Chomczynski, P. and Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanatephenol- chloroform extraction. Anal. Biochem., 162: 156, 1987.

    Article  PubMed  CAS  Google Scholar 

  77. Maniatis, T., Fritsch, E. F., and Sambrook, J.: Molecular cloning: a laboratory manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1990.

    Google Scholar 

  78. Rao, J. Y., Bonner, R. B., Hurst, R. E., Qiu, W. R., Reznikoff, C. A., and Hemstreet, G. P.: Quantitative changes in cytoskeletal and nuclear actin levels during cellular transformation. Int. J. Cancer, 70: 423, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Shibata, H., Spencer, T. E., Onate, S. A., Jenster, G., Tsai, S. Y., Tsai, M. J., and O’Malley, B. W.: Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Progress in Hormone Research, 52: 141, 1997.

    PubMed  CAS  Google Scholar 

  80. Leid, M., Kastner, P., and Chambon, P.: Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem. Sci., 17: 427, 1992.

    Article  PubMed  CAS  Google Scholar 

  81. Forman, B. M., Umesono, K., Chen, J., and Evans, R. M.: Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell, 81: 541, 1995.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang, X. K. and Pfahl, M.: Hetero- and homodimeric receptors in thyroid hormone and vitamin A action. Receptor 3: 183, 1993.

    PubMed  CAS  Google Scholar 

  83. Lufkin, T., Lohnes, D., Mark, M., Dierich, A., Gorry, P., Gaub, M. P., LeMeur, M., and Chambon, P.: High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc. Natl. Acad. Sci. USA., 90: 7225, 1993.

    Article  PubMed  CAS  Google Scholar 

  84. Sun, S.-Y., Yue, P., Dawson, M., Shroot, B., Michel, S., Lamph, W., Heyman, R., Teng, M., Chandraratna, R., Shudo, K., Hong, W., and Lotan, R.: Differential Effects of Synthetic Nuclear Retinoid Receptor-selective Retinoids on the Growth of Human Non-Small Cell Lung Carcinoma Cells. Cancer Res., 57: 4931, 1997.

    PubMed  CAS  Google Scholar 

  85. Hemstreet, G. P., Rao, J. Y., Hurst, R. E., Bonner, R. B., Waliszewski, P., Grossman, H. B., Liebert, M., and Bane, B. L.: G-actin as a risk factor and modulatable endpoint for cancer chemoprevention trials. J. Cell. Biochem. Suppl., 25S: 197, 1996.

    Article  Google Scholar 

  86. Hemstreet, G. P., Bonner, R. B., Hurst, R. E., and O’Dowd, G. A.: Cytology of bladder cancer. In N.J. Vogelzang, P.T. Scardino, W.U. Shipley, and D.S. Coffey (Eds.), Comprehensive Textbook of Genitourinary Oncology. Baltimore, MD: Williams & Wilkins, 1996. Pp. 338–350.

    Google Scholar 

  87. Rao, J. Y., Hemstreet, G. P., Bonner, R. B., Hurst, R. E., Qiu, W. R., and Reznikoff, C. A.: Nuclear actin as a biomarker for bladder cancer risk assessment. J. Urol., 151: 349A, 1994.(Abstract)

    Google Scholar 

  88. Rao, J. Y., Hemstreet, G. P., Hurst, R. E, Bonner, R. B., Min, K. W., and Jones, P. L.: Cellular F-actin levels as a marker for cellular transformation: correlation with bladder cancer risk. Cancer Res., 51: 2762, 1991.

    PubMed  CAS  Google Scholar 

  89. Rao, J. Y., Hurst, R. E., Bales, W. D., Jones, R L., Bass, R. A., Archer, L. T., and Hemstreet, G. P.: Cellular f-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res., 50: 2215, 1990.

    PubMed  CAS  Google Scholar 

  90. Jones, P. A.: DNA Methylation Errors and Cancer. Cancer Res., 56: 2463, 1996.

    PubMed  CAS  Google Scholar 

  91. Cairns, J.: The cancer problem. Sci. Am. 233: 64, 1975.

    CAS  Google Scholar 

  92. Rothman, N., Bhatnagar, V. K., Hayes, R. B., Zenser, T. V., Kashyap, S. K., Butler, M. A. X., Bell DA, Lak-shmi, V., Jaeger, M., Kashyap, R., and et al: The impact of interindividual variation in NAT2 activity on benzidine urinary metabolites and urothelial DNA adducts in exposed workers. Proc. Natl. Acad. Sci. USA., 93: 5084, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurst, R.E. et al. (1999). Complexity, Retinoid-Responsive Gene Networks, and Bladder Carcinogenesis. In: Baskin, L.S., Hayward, S.W. (eds) Advances in Bladder Research. Advances in Experimental Medicine and Biology, vol 462. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4737-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4737-2_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7147-2

  • Online ISBN: 978-1-4615-4737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics