Skip to main content

Pathways for Relaxation of Detrusor Smooth Muscle

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 462))

Abstract

To fullfill its functions, the bladder has to contract during voiding and relax during the filling phase to accommodate increasing volumes of urine. During filling of the normal bladder, there is no significant rise in intravesical pressure until the bladder is near its functional capacity.1 The mechanisms of bladder contraction have been well established,2,3 but those responsible for bladder relaxation during urine storage remain unknown. Both myogenic and neural factors have been discussed.4 Even though some investigators have suggested that viscoelastic properties of the smooth muscle itself may facilitate bladder compliance, and that bladder adaptation is independent of nervous influences,5,6 at least in animals, a neural factor cannot be excluded.4 During filling, the detrusor maintains an active, myogenic tone. Modulation of this tone by the smooth muscle cell itself, or by extrinsic influences, may be one of the decisive factors determining the ability of the bladder to store urine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coolsaet, B.: Bladder compliance and detrusor activity during the collection phase. Neurourol. Urodyn., 4: 263, 1985.

    Google Scholar 

  2. Andersson, K.-E.: Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol. Rev., 45: 253, 1993.

    Google Scholar 

  3. Turner, W.H. and Brading, A.F.: Smooth muscle of the bladder in the normal and the diseased state: pathophysiology, diagnosis, treatment. Pharmacol. Then, 75: 77, 1997.

    CAS  Google Scholar 

  4. Vaughan, C.W. and Satchell, P.M.: Urine storage mechanisms. Progr. Neurobiol., 46: 215, 1995.

    CAS  Google Scholar 

  5. Tang, P.C. and Ruch, T.C.: Non-neurogenic basis of bladder tonus. Am. J. Physiol., 181: 249, 1969.

    Google Scholar 

  6. Klevmark, B.: Motility of the urinary bladder in cats during filling at physiological rates. II. Effects of extrinsic bladder denervation on intramural tension and intravesical pressure patterns. Acta Physiol. Scand., 101: 176, 1977.

    PubMed  CAS  Google Scholar 

  7. Brading, A.F. and Turner, W.H.: The unstable bladder: towards a common mechanism. Br. J. Urol., 73: 3, 1994.

    PubMed  CAS  Google Scholar 

  8. Sunahara, R.K., Dessauer, C.W. and Gilman, A.G.: Complexity and diversity of mammalian adenylyl cyclases. Annu. Rev. Pharmacol. Toxicol., 36: 461, 1996.

    PubMed  CAS  Google Scholar 

  9. Morita, T., Tsujii, T., and Dokita, S.: Regional difference in functional roles of cAMP and cGMP in lower urinary tract smooth muscle contractility. Urol. Int., 49: 191, 1992.

    PubMed  CAS  Google Scholar 

  10. Dokita, S., Smith, D., Nishimoto, T., Wheeler, M.A. and Weiss, R.M.: Involvement of nitric oxide and cyclic AMP in rabbit urethral relaxation. Eur. J. Pharmacol., 269: 269, 1994.

    Google Scholar 

  11. Persson, K. and Andersson, K.-E.: NANC-mediated relaxation of the rabbit lower urinary tract smooth muscle and associated levels of cGMP and cAMP. Eur. J. Pharmacol., 268: 159, 1994.

    PubMed  CAS  Google Scholar 

  12. Hegde, S.S., Choppin, A., Bonhaus, D., Briaud, S., Loeb, M., Moy, T.M., Loury, D. and Eglen, R.M.: Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol., 120: 1409, 1997.

    PubMed  CAS  Google Scholar 

  13. Lincoln, J. and Burnstock, G.: Autonomic innervation of the urinary bladder and urethra. In: The Autonomic Nervous System. Vol. 6, Chapter 8, Nervous Control of the Urogenital System, ed by CA Maggi. Harwood Academic Publishers, London, UK, 1993; pp. 33–68.

    Google Scholar 

  14. Perlberg, S. And Caine, M.: Adrenergic response of bladder muscle in prostatic obstruction Urology, 20: 524, 1982.

    PubMed  CAS  Google Scholar 

  15. Årnark, P., Nergårdh, A. and Kinn, A.C.: The effect of noradrenaline on the contractile response of the urinary bladder. Scand. J. Urol. Nephrol., 20: 203, 1986.

    Google Scholar 

  16. Levin, R.M. and Wein, A.J.: Quantitative analysis of alpha and beta adrenergic receptor densities in the lower urinary tract of the dog and the rabbit. Invest. Urol., 17: 75, 1979.

    PubMed  CAS  Google Scholar 

  17. Nergårdh, A., Boréus, L.O. and Naglo, A.S.: Characterization of the adrenergic beta-receptors in the urinary bladder of man and cat. Acta Pharmacol. Toxicol., 40: 14, 1977.

    Google Scholar 

  18. Larsen, J.J.: α- and β-Adrenoceptors in the detrusor muscle and bladder base of the pig and β-adrenoceptors in the detrusor of man. Br. J. Urol., 65: 215, 1979.

    CAS  Google Scholar 

  19. Igawa, Y., Yamazaki, Y., Takeda, H., Hayakawa, K., Akahane, M., Ajisawa, Y., Yoneyama, T. and Nishi-zawa, O.: The role of β3-adrenoceptors in normal and neurogenic detrusors. Neurourol. Urodyn., 16: 363, 1997.

    Google Scholar 

  20. Andersson, K.-E.: Current concepts in the treatment of disorders of micturition. Drugs, 35: 477, 1988.

    PubMed  CAS  Google Scholar 

  21. Lipworth, B.J.: Clinical pharmacology of β3-adrenoceptors. Br. J. Clin. Pharmacol., 43: 291, 1996.

    Google Scholar 

  22. Strosberg, D. and Pietri-Rouxel. F.: Function and regulation of the β3-adrenoceptor. Trends Pharmacol. Sci., 17: 273, 1997.

    Google Scholar 

  23. Takeda, M., Mizusawa, T., Obara, K., Koizumi, T., Tsutsui, T., Hatano, A., Kanai, T. and Takahashi, K.: Adrenergic β1-, β2-, and β3-receptor subtypes in the detrusor of human urinary bladder. — Evaluation by mRNA expression and isometric contraction. Neurourol. Urodyn., 16: 365, 1997.

    Google Scholar 

  24. Nishimoto, T., Latifpour, J., Wheeler, M.A., Yoshida, M., Weiss, R.M.: Age-dependent alterations in b-adrenergic responsiveness of rat detrusor smooth muscle. J. Urol., 153: 1701, 1995.

    PubMed  CAS  Google Scholar 

  25. Wheeler, M.A., Pontari, M., Nishimoto, T., Weiss, R.M.: Changes in lipid composition and isoproterenol-and ethanol-stimulated adenylate cyclase activity in aging Fischer rat bladders. J. Pharmacol. Exp. Ther., 254: 277, 1990.

    PubMed  CAS  Google Scholar 

  26. Persson, K., Alm, P., Johansson, K., Larsson, B. and Andersson, K.-E.: Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. J. Auton. Nerv. Syst., 52: 225, 1995.

    PubMed  CAS  Google Scholar 

  27. Smet, P.J., Jonavicius, J., Marshall, V.R. And De Vente, J.: Distribution of nitric oxide synthase-immunore-active nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience, 71: 337, 1996.

    PubMed  CAS  Google Scholar 

  28. Smet, P.J., Edyvane, K.A., Jonavicius, J. and Marshall, V.R.: Neuropeptides and transmitter-synthesizing enzymes in intrinsic neurons of the human urinary bladder. J. Neurocytol., 25: 112, 1996.

    PubMed  CAS  Google Scholar 

  29. Arvidsson, U., Reidl, M., Eide, R. and Meister, B.: Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J. Comp. Neurol., 378: 454, 1997.

    PubMed  CAS  Google Scholar 

  30. Fahrenkrug, J.: Transmitter role of vasoactive intestinal peptide. Pharmacol. Toxicol., 72: 354, 1993.

    PubMed  CAS  Google Scholar 

  31. Chakter, S. and Rattan, S.: Involvement of cAMP and cGMP in relaxation of internal anal sphincter by neural stimulation, VIP, and NO. Am. J. Physiol., 264: G702, 1993.

    Google Scholar 

  32. Johns, A.: The effect of VIP on the urinary bladder and taenia coli of the guinea-pig. Can. J. Physiol. Pharmacol., 56: 106, 1979.

    Google Scholar 

  33. Mackenzie, I. and Burnstock, G.: Neuropeptide action on the guinea-pig bladder; a comparison with the effects of field stimulation and ATP. Eur. J. Pharmacol., 105: 85, 1984.

    PubMed  CAS  Google Scholar 

  34. Callahan, S.M. and Creed, K.E.: Non-cholinergic neurotransmission and the effects of peptides on the urinary bladder of guinea-pigs and rabbits. J. Physiol., 374: 103, 1986.

    PubMed  CAS  Google Scholar 

  35. Levin, R.M. and Wein, A.J.: Effect of vasoactive intestinal peptide on the contractility of the rabbit urinary bladder. Urol. Res., 9: 217, 1989.

    Google Scholar 

  36. Sjögren, C., Andersson, K.-E. and Mattiasson, A.: Effects of vasoactive intestinal polypeptide on isolated urethral and urinary bladder smooth muscle from rabbit and man. J. Urol., 133: 136, 1985.

    PubMed  Google Scholar 

  37. de Groat, W.C., Booth, A.M. and Yoshimura, N.: Neurophysiology of micturition and its modification in animal models of human disease. In: The Autonomic Nervous System. Vol. 6, Chapter 8, Nervous Control of the Urogenital System, ed by CA Maggi. Harwood Academic Publishers, London, UK, 1993; pp. 227–289.

    Google Scholar 

  38. Gu, J., Restorick, J.M., Blank, M.A., Huang, W.M., Polak, J.M., Bloom, S.R. and Mundy, A.R.: Vasoactive intestinal polypeptide in the normal and unstable bladder. Br. J. Urol., 55: 645, 1983.

    PubMed  CAS  Google Scholar 

  39. Chappie, C.R., Milner, P., Moss, H.E. and Burnstock, G.: Loss of sensory neuropeptides in the obstructed human bladder. Br. J. Urol., 70: 373, 1992.

    Google Scholar 

  40. Kinder, R.B., Restorick, J.M. and Mundy, A.R.: Vasoactive intestinal polypeptide in the hyperreflexic neuropathic bladder. Br. J. Urol., 57: 289, 1985.

    PubMed  CAS  Google Scholar 

  41. Klarskov, P., Holm-Bentzen, M., N’rgaard, T., Ottesen, B., Walter, S. and Hald, T.: Vasoactive intestinal polypeptide concentration in human bladder neck smooth muscle and its influence on urodynamic parameters. Br. J. Urol., 60: 113, 1987.

    PubMed  CAS  Google Scholar 

  42. Laurenza, A., McHugh-Sutkowski, E.M. and Seamon, K.B.: Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action. Trends Pharmacol. Sci., 10: 442, 1989.

    PubMed  CAS  Google Scholar 

  43. Morita, T., Wheeler, M.A. and Weiss, R.M.: Relaxant effect of forskolin in rabbit detrusor muscle: role of cyclic AMP. J. Urol., 135: 1293, 1986.

    PubMed  CAS  Google Scholar 

  44. Longhurst, P.A., Briscoe, J.A.K., Rosenberg, D.J. and Leggett, R.E.: The role of cyclic nucleotides in guinea-pig bladder contractility. Br. J. Pharmacol., 121: 1665, 1997.

    PubMed  CAS  Google Scholar 

  45. Truss, M., Ückert, S., Stief, C.G., Forssmann, W.G. and Jonas, U.: Cyclic nucleotide phosphodiesterae (PDE) isoenzymes in the human detrusor smooth muscle. II. Effect of various PDE inhibitors on smooth muscle tone and cyclic nucleotide levels in vitro. Urol. Res., 24: 129, 1996a.

    PubMed  CAS  Google Scholar 

  46. Truss, M., Ückert, S., Stief, C.G., Kuczyk, M. and Jonas, U.: Cyclic nucleotide phosphodiesterae (PDE) isoenzymes in the human detrusor smooth muscle. I. Identification and characterization. Urol. Res., 24: 123,1996b.

    PubMed  CAS  Google Scholar 

  47. Truss, M., Ückert, S., Stief, C.G., Kuczyk, M., Schulz-Knappe, P., Forssmann, W.-G. and Jonas, U.: Effects of various phosphodiesterase-inhibitors, forskolin, and sodium nitroprusside on porcine detrusor muscle tonic responses to muscarinic stimulation and cyclic nucleotide levels in vitro. Neurourol. Urodyn., 1996c; 15: 59, 1996.

    PubMed  CAS  Google Scholar 

  48. Truss, M., Ückert, S., Stief, C.G., Kuczyk, M., Schulz-Knappe, P., Forssmann, W.-G. and Jonas, U.: Porcine detrusor cyclic nucleotide phosphodiesterase isoenzyme: characterization and functional effects of various phosphodiesterase inhibitors in vitro. Urology, 45: 893, 1995.

    PubMed  CAS  Google Scholar 

  49. Morita, T., Ando, M., Kihara, K., Oshima, H., Kondo, S. and Tashima, Y.: Dissociation of magnitude of relaxation from cyclic AMP levels in rabbit urinary bladder. J. Smooth Muscle Res., 28: 121, 1992.

    PubMed  CAS  Google Scholar 

  50. Mulhall, J.P., Daller, M., Traish, A.M., Gupta, S., Park, K., Salimpour, P., Payton, T.R., Krane, R.J. and Goldstein, I.: Intracavernosal forskolin: role in management of vasculogenic impotence resistant to standard 3-agent pharmacotherapy. J. Urol., 158: 1752, 1997.

    PubMed  CAS  Google Scholar 

  51. Laurenza, A., Robbins, J.D. and Seamon, K.B.:. Interaction of aminoalkylcarbamates of forskolin with adenylyl cyclase: synthesis of an iodinated derivative of forskolin with high affinity for adenylyl cyclase. Mol. Pharmacol., 41: 360, 1992.

    PubMed  CAS  Google Scholar 

  52. McHugh Sutkowski, E., Tang, W.-J., Broome, C.W., Robbins, J.D. and Seamon, K.B.: Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gsa. Biochemistry, 33: 12852, 1994.

    CAS  Google Scholar 

  53. Beavo, J.A.: Cyclic nucleotide phosphodiesterases: functional implications of mutiple isoforms. Physiol. Rev., 75: 725, 1995.

    PubMed  CAS  Google Scholar 

  54. Poison, J.B. and Strada, S.J.:Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol., 36: 403, 1996.

    Google Scholar 

  55. Truss, M., Stief, C.G., Ückert, S., Becker, A.J., Forssmann, W.-G. and Jonas, U.: Initial clinical experience with the selective phosphodiesterase (PDE)-I isoenzyme inhibitor vinpocitine in the treatment of urge-incontinence and low compliance bladder. J. Urol., 157: 187, 1997.

    Google Scholar 

  56. Schmidt, H.H.H.W., Lohmann, S.M. and Walter, U.: The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim. Biophys. Acta, 1178: 153, 1993.

    PubMed  CAS  Google Scholar 

  57. Wheeler, M.A., Pontari, M., Dokita, S., Nishimoto, T., Ho Cho, Y., Whan Hong, K., Weiss, R.M.: Age-dependent changes in particulate and soluble guanylyl cyclase activities in urinary tract smooth muscle. Mol. Cell. Biochem., 169: 115, 1997.

    PubMed  CAS  Google Scholar 

  58. Andersson, K.-E. and Persson, K.: Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand. J. Urol. Nephrol., 29(Suppl 175): 43, 1995.

    Google Scholar 

  59. Lundberg, J.M.: Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev., 48: 113, 1996.

    PubMed  CAS  Google Scholar 

  60. Desai, K.M., Sessa, W.C., and Vane, J.R.: Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature, 351: 477, 1991.

    PubMed  CAS  Google Scholar 

  61. James, M.J., Birmingham, A.T. and Hill, S.J.: Partial mediation by nitric oxide of the relaxation of human isolated detrusor strips in response to electrical field stimulation. Br. J. Clin. Pharmacol., 35: 366, 1993.

    PubMed  CAS  Google Scholar 

  62. Williams, P., Datta, S., German, K., Stephenson, T.P. and Bedwani, J.R.: Comparison of relaxation responses of detrusor strips from neuropathic and control patients. Br. J. Urol., 76: 726, 1995.

    PubMed  CAS  Google Scholar 

  63. Moon, A., Pickard, R.S., Gillespie, J.I. and Neal, D.E.: Contractile responss to sodium nitroprusside and L-arginine in isolated human detrusor. J. Urol., 157: 258, 1997 (abstract 1012).

    Google Scholar 

  64. Boland, B., Himpens, B., Paques, C., Casteels, R. and Gillis, J.M.: ATP induced-relaxation in the mouse bladder smooth muscle. Br. J. Pharmacol., 108: 749, 1993.

    PubMed  CAS  Google Scholar 

  65. Bolego, C., Pinna, C., Abbracchio, M.P., Cattabeni, F. and Puglisi, L.: The biphasic response of rat vesical smooth muscle to ATP. Br. J. Pharmacol., 114: 1557, 1995.

    PubMed  CAS  Google Scholar 

  66. Andersson, K.-E.: Clinical pharmacology of potassium channel openers. Pharmacol. Toxicol., 70: 244, 1992.

    PubMed  CAS  Google Scholar 

  67. Trivedi, S., Potter-Lee, L., Li, J.H., Yasay, G.D., Russell, K., Ohnmach, C.J., Empfield, J.R., Trainor, D.A. and Kau, S.T.: Calcium dependent K-channels in guinea pig and human urinary bladder. Biochem. Biophys. Res. Commun., 213: 404, 1995.

    PubMed  CAS  Google Scholar 

  68. Fujii, K., Foster, C.D., Brading, A.F. and Parekh, A.B.: Potassium channel blockers and the effects of cro-makalim on the smooth nuscle of the guinea-pig bladder. Br. J. Pharmacol., 99: 779, 1990.

    PubMed  CAS  Google Scholar 

  69. Foster, C.D., Speakman, M.J., Fujii, K. and Brading, A.F.: The effects of cromakalim on the detrusor of human and and pig urinary bladder. Br. J. Urol., 63: 284, 1989.

    PubMed  CAS  Google Scholar 

  70. Grant, T.L. and Zuzack, J.S.: Effects of K+ channel blockers and cromakalim (BRL 34915) on the mechanical activity of guinea pig detrusor smooth muscle. J. Pharmacol. Exp. Then, 259: 1158, 1991.

    CAS  Google Scholar 

  71. Malmgren, A., Andersson, K.-E., Andersson, P.-O., Fovaeus. M. And Sjögren, C.: Effects of cromakalim (BRL 34915) and pinacidil on normal and hypertrophied rat detrusor in vitro. J. Urol., 143: 828, 1990.

    PubMed  CAS  Google Scholar 

  72. Malmgren, A., Andersson, K.-E., Sjögren, C. and Andersson, P.-O.: Effects of pinacidil and cromakalim (BRL 34915) on bladder function in rats with detrusor instability. J. Urol., 142: 1134, 1989.

    PubMed  CAS  Google Scholar 

  73. Edwards, G., Henshaw, M., Miller, M. and Weston, A.H.: Comparison of the effects of several potassium-channel openers on rat bladder and rat portal vein in vitro. Br. J. Pharmacol., 102: 679, 1991.

    PubMed  CAS  Google Scholar 

  74. Barras, M., Van der Graf, P.H., Christophe, P. and Itzchak, A.: Relaxant efficacy of potassium channel openers in rabbit isolated bladder and mesenteric artery. Eur. J. Urol., 30 (Suppl 2): 240, 1996 (abstract 894).

    Google Scholar 

  75. Hedlund, H., Mattiasson, A. and Andersson, K.-E.: Effects of pinacidil on detrusor instability in men with outlet obstruction. J. Urol., 146: 1345, 1991.

    PubMed  CAS  Google Scholar 

  76. Komersova, K., Rogerson, J.W., Conway, E.L., Lim, T.C., Brown, D.J., Krum, H., Jackman, G.P., Murdoch, R. and Louis, W.J.:The effect of levcromakalim (BRL 38227) on bladder function in patients with high spinal cord lesions. Br. J. Pharmacol., 39: 207, 1995.

    CAS  Google Scholar 

  77. Howe, B.B., Halterman, T.J., Yochim, C.L., Do, M.L., Pettinger, S.J., Stow, R.B., Ohnmacht, C.J., Russel, K., Empfield, J.R., Trainor, D.A., Brown, F.J. and Kau, S.T.: ZENECA ZD6169: A novel KATP channel opener with in vivo selectivity for urinary bladder. J. Pharmacol. Exp. Ther., 274: 884, 1995.

    PubMed  CAS  Google Scholar 

  78. Masuda, N., Uchida, W., Shirai, Y., Shibasaki, K., Goto, K. and Takenaka, T.: Effect of the potassium channel opener YM934 on the contractile response to electrical field stimulation in pig detrusor smooth muscle. J. Urol., 154: 1914, 1995.

    PubMed  CAS  Google Scholar 

  79. Hashitani, H., Suzuki, H. and Kumazawa, J.: Effects of Y26763, a novel K-channel opener, on electrical responses of smooth muscle in the guinea-pig bladder. J. Urol., 155: 1454, 1996.

    PubMed  CAS  Google Scholar 

  80. Li, J.H., Yasay, G.D., Zografos, P., Kau, S.T., Ohnmacht, C.J., Russell, K., Empfield, J.R., Brown, F.J., Trainor, D.A., Bonev, A.D., Heppner, T.J. and Nelson, M.T.: ZENECA ZD6169 and its analogs from a novel series of anilide tertiary carbinols: in vitro KATP channel opening activity in bladder detrusor. Pharmacology, 52: 33, 1995.

    Google Scholar 

  81. Trivedi, S., Stetz, S.L., Potter-Lee, L., McConville, M., Li, J.H., Empfield, J.R., Ohnmacht, C.J., Russell, K., Brown, F.J., Trainor, D.A., Kau, S.T.: K-channel opening activity of ZD6169 and its analogs: Effect on 86RB efflux and 3H-P1075 binding in bladder smooth muscle. Pharmacology, 50: 388, 1995.

    PubMed  CAS  Google Scholar 

  82. Levin, R.M., Hayes, L., Zhao, Y. and Wein, A.J.: Effect of pinacidil on spontaneous and evoked contractile activity. Pharmacology, 45: 1, 1992.

    PubMed  CAS  Google Scholar 

  83. Yu, Y.B., Fraser, M.O. and de Groat, W.C.: Effect of intravesical administration of ZD6169 on the micturition reflex and on C-fos expression in the spinal cord induced by noxious bladder stimulation in the rat. Society for Neuroscience, 22: 93, 1996 (abstract 45.8).

    Google Scholar 

  84. Pandita, R.K., Persson, K. and Andersson, K.-E.: Effects of the K+ channel opener, ZD6169, on volume and PGE2-stimulated bladder activity in conscious rats. J. Urol., 158: 2300, 1997.

    PubMed  CAS  Google Scholar 

  85. Martin, S.W., Radley, S.C., Chess-Williams, R., Korstanje, C. and Chappie, C.R.: Relaxant effects of potassium-channel openers on normal and hyperreflexic detrusor muscle. Br. J. Urol., 80: 405, 1997.

    PubMed  CAS  Google Scholar 

  86. Mostwin, J.L.: The action potential of guinea pig bladder smooth muscle. J. Urol., 135: 1299, 1986.

    PubMed  CAS  Google Scholar 

  87. Montgomery, B.S. and Fry, C.H.; The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J. Urol., 147: 176, 1992.

    PubMed  CAS  Google Scholar 

  88. Gallegos, C.R. and Fry, C.H.: Alterations to the electrophysiology of isolated human detrusor smooth muscle cells in bladder disease. J. Urol., 151: 754, 1994.

    PubMed  CAS  Google Scholar 

  89. Wellner, M.C and Isenberg, G.: Stretch-activated nonselective cation channels in urinary bladder myocytes: importance for pacemaker potentials and myogenic response. Experientia, 66: 93, 1993.

    CAS  Google Scholar 

  90. Chambers, P., Neal, D.E. and Gillespie, J.I.: Ca2+ signalling in cultured smooth muscle cells from human bladder. Exp. Physiol., 81: 553, 1996.

    PubMed  CAS  Google Scholar 

  91. Shapiro, E., Tang, R., Rosenthal, E. and Lepor, H.: The binding and functional properties of voltage dependent calcium channel receptors in pediatric normal and myelodysplastic bladders. J. Urol., 146: 520, 1991.

    PubMed  CAS  Google Scholar 

  92. Forman, A., Andersson, K.-E., Henriksson, L., Rud, T. and Ulmsten, U.: Effects of nifedipine on the smooth muscle of the human urinary tract in vitro and in vivo. Acta Pharmacol. Toxicol., 43: 111, 1978.

    CAS  Google Scholar 

  93. Andersson, K.-E., Fovaeus, M., Morgan, E. and Mclorie, G.: Comparative effects of five different calcium channel blockers on the atropine resistant contraction in electrically stimulated rabbit urinary bladder. Neurourol. Urodyn., 5: 579, 1986.

    CAS  Google Scholar 

  94. Bo, X. and Burnstock, G.: The effects of BAY K 8644 and nifedipine on the responses of rat urinary bladder to electrical field stimulation, β-γ-methylene ATP and acetylcholine. Br. J. Pharmacol., 101: 494, 1990.

    PubMed  CAS  Google Scholar 

  95. Zar, M.A., Iravani, M.M. and Luheshi, G.N.: Effect of nifedipine on the contractile responses of the isolated rat bladder. J. Urol., 143: 835, 1990.

    PubMed  CAS  Google Scholar 

  96. Sjögren, C., Andersson, K.-E., Husted, S., Mattiasson, A. and M-ller-Madsen, B.: Atropine resistance of the transmurally stimulated isolated human bladder. J. Urol., 128: 1368, 1982.

    PubMed  Google Scholar 

  97. Yamamoto, M., Harm, S.C., Grasser, W.A. and Thiede, M.A.: Parathyroid hormone-related protein in the rat urinary bladder: A smooth muscle relaxant produced locally in response to mechanical stretch. Proc. Natl. Acad. Sci, USA, 89: 5326, 1992.

    PubMed  CAS  Google Scholar 

  98. Persson, K., Bruns, M.E.H., Bruns, D.E., Tuttle, J.B. and Steers, W.D.: Stretch increases secretion of parathyroid hormone related protein by cultured bladder smooth muscle cells. Neurourol. Urodyn., 13: 406, 1994.

    Google Scholar 

  99. Levin, R.M., Wein, A.J., Krasnopolsky, L., Atta, M.A. and Ghoniem, G.M.: Effect of mucosal removal on the response of the feline bladder to pharmacological stimulation. J. Urol., 153: 1291, 1995.

    PubMed  CAS  Google Scholar 

  100. Mombouli, J.-V. and Vanhoutte, P.M.: Endothelium-derived hyperpolarizing factor(s): updating the unknown. Trends Pharmacol. Sci., 18: 252, 1997.

    PubMed  CAS  Google Scholar 

  101. Fovaeus, M., Fujiwara, M., Högestätt, E.D., Persson, K. and Andersson, K.-E.: A non-nitrergic smooth muscle relaxant factor released from the contracting rat urinary bladder. Acta Physiol. Scand., 162: 115, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andersson, KE. (1999). Pathways for Relaxation of Detrusor Smooth Muscle. In: Baskin, L.S., Hayward, S.W. (eds) Advances in Bladder Research. Advances in Experimental Medicine and Biology, vol 462. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4737-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4737-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7147-2

  • Online ISBN: 978-1-4615-4737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics