Skip to main content

Function of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Gene Families in Retinoid Signaling

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 7

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 463))

Abstract

Vitamin A (retinol) must be metabolized to retinoic acid in order to fulfill its roles in vertebrate growth and development (Blaner and Olson, 1994; Maden, 1994; Hofmann and Eichele, 1994). Retinoic acid mediates retinoid signaling by binding to and modulating the transcriptional regulatory properties of nuclear retinoic acid receptors (Kastner et al, 1994; Mangelsdorf et al, 1994). Retinoic acid reporter assays of individual mouse embryos indicate that retinoic acid is undetectable during the initial stage of gastrulation, but that it is easily detectable later in gastrulation and neurulation (Rossant et al, 1991; Ang et al, 1996a). Retinoic acid receptors are expressed prior to detection of retinoic acid in mouse embryos (Dollé et al, 1990; Ruberte et al, 1991; Ang and Duester, 1997), indicating that a major factor governing retinoid signaling is the induction of endogenous retinoic acid synthesis during embryogenesis. To unravel this layer of biological control in the retinoid signaling pathway an understanding of the enzymes involved in retinoic acid synthesis is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, H. L., Deltour, L., Hayamizu, T. F., Zgombic-Knight, M., and Duester, G. (1996a) Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression, J. Biol. Chem. 271, 9526–95

    Article  PubMed  CAS  Google Scholar 

  • Ang, H. L., Deltour, L., Zgombic-Knight, M., Wagner, M. A., and Duester, G. (1996b) Expression patterns of class I and class IV alcohol dehydrogenase genes in developing epithelia suggest a role for alcohol dehydro-genase in local retinoic acid synthesis, Alcohol. Clin. Exp. Res. 20, 1050–1064.

    Article  PubMed  CAS  Google Scholar 

  • Ang, H. L. and Duester, G. (1997) Initiation of retinoid signaling in primitive streak mouse embryos: Spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis, Dev. Dyn. 208, 536–543.

    Article  PubMed  CAS  Google Scholar 

  • Blaner, W. S. and Olson, J. A. (1994) Retinol and retinoic acid metabolism, in“ The Retinoids: Biology, Chemistry, and Medicine, 2nd edition” M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds., Raven Press, Ltd., New York, p. 229.

    Google Scholar 

  • Blumberg, B., Bolado, J.,Jr., Derguini, F., Craig, A. G., Moreno, T. A., Chakravarti, D., Heyman, R. A., Buck, J., and Evans, R. M. (1996) Novel retinoic acid receptor ligands in Xenopus embryos, Proc. Natl. Acad. Sci. USA 93, 4873–4878.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, B., Bolado, J.,Jr., Moreno, T. A., Kintner, C, Evans, R. M., and Papalopulu, N. (1997) An essential role for retinoid signaling in anteroposterior neural patterning, Development 124, 373–379.

    PubMed  CAS  Google Scholar 

  • Boleda, M. D., Saubi, N., FarrĂ©s, J., and ParĂ©s, X. (1993) Physiological substrates for rat alcohol dehydrogenase classes: Aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids, Arch. Biochem. Biophys. 307, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Namkung, M. J., and Juchau, M. R. (1995) Biotransformation of all-trans-retinol and all-trans-retinal to all-trans-retinoic acid in rat conceptal homogenates, Biochem. Pharmacol. 50, 1257–1264.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Achkar, C, and Gudas, L. J. (1994a) Enzymatic conversion of retinaldehyde to retinoic acid by cloned murine cytosolic and mitochondrial aldehyde dehydrogenases, Mol. Pharmacol. 46, 88–96.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Huang, L., and Solursh, M. (1994b) A concentration gradient of retinoids in the early Xenopus laevis embryo, Dev. Biol. 161, 70–76.

    Google Scholar 

  • Connor, M. J. and Smit, M. H. (1987) Terminal-group oxidation of retinol by mouse epidermis: Inhibition in vitro and in vivo, Biochem. J. 244, 489–492.

    CAS  Google Scholar 

  • Creech Kraft, J., Schuh, T., Juchau, M., and Kimelman, D. (1994a) The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development, Proc. Natl Acad. Sei. USA 91, 3067–3071.

    Article  CAS  Google Scholar 

  • Creech Kraft, J., Schuh, T., Juchau, M. R., and Kimelman, D. (1994b) Temporal distribution, localization and metabolism of all-trans-retinol, didehydroretinol and all-trans-retinal during Xenopus development, Biochem. J. 301, 111–119.

    Google Scholar 

  • Deltour, L., Ang, H. L., and Duester, G. (1996) Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome, FASEB J. 10, 1050–1057.

    PubMed  CAS  Google Scholar 

  • Deltour, L., Haselbeck, R. J., Ang, H. L., and Duester, G. (1997) Localization of class I and class IV alcohol dehy-drogenases in mouse testis and epididymis: Potential retinol dehydrogenases for endogenous retinoic acid synthesis, Biol Reprod. 56, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Dickman, E. D., Thaller, C, and Smith, S. M. (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects, Development 124, 3111–3121.

    PubMed  CAS  Google Scholar 

  • Dockham, P. A., Lee, M.-O., and Sladek, N. E. (1992) Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde, Biochem. Pharmacol. 43, 2453–2469.

    Article  PubMed  CAS  Google Scholar 

  • DollĂ©, P., Ruberte, E., Leroy, P., Morriss-Kay, G., and Chambon, P. (1990) Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse or-ganogenesis, Development 110, 1133–1151.

    PubMed  Google Scholar 

  • Duester, G. (1996) Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehy-drogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis, Biochemistry 35, 12221–12227.

    Article  PubMed  CAS  Google Scholar 

  • Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendriks, H. F. J., De Vries, N. J., Heideveld, M., and Nieuwkoop, P. D. (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system, Nature 340, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.-O., Tapia, O., and Branden, C.-I. (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2. 4 Ă… resolution, J. Mol Biol 102, 27–59.

    Article  PubMed  CAS  Google Scholar 

  • Futterman, S. (1962) Enzymatic oxidation of vitamin A aldehyde to vitamin A acid, J. Biol Chem. 237, 677–680.

    PubMed  CAS  Google Scholar 

  • Haselbeck, R. J., Ang, H. L., Deltour, L., and Duester, G. (1997a) Retinoic acid and alcohol/retinol dehydrogenase in the mouse adrenal gland: A potential endocrine source of retinoic acid during development, Endocrinology 138, 3035–3041.

    Article  PubMed  CAS  Google Scholar 

  • Haselbeck, R. J., Ang, H. L., and Duester, G. (1997b) Class IV alcohol/retinol dehydrogenase localization in epidermal basal layer: Potential site of retinoic acid synthesis during skin development, Dev. Dyn. 208, 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Haselbeck, R. J. and Duester, G. (1997) Regional restriction of alcohol/retinol dehydrogenases along the mouse gastrointestinal epithelium, Alcohol Clin. Exp. Res. 21, 1484–1490.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, C. and Eichele, G. (1994) Retinoids in development, in“The Retinoids: Biology, Chemistry, and Medicine, 2nd Edition” M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds., Raven Press, Ltd., New York, p. 387.

    Google Scholar 

  • Hurley, T. D., Bosron, W. F., Hamilton, J. A., and Amzel, L. M. (1991) Structure of human betal alcohol dehydrogenase: catalytic effects of non-active-site substitutions, Proc. Natl. Acad. Sci. USA 88, 8149–S153.

    Article  PubMed  CAS  Google Scholar 

  • Irie, T., Azuma, M, and Seki, T. (1991) The retinal and 3-dehydroretinal in Xenopus laevis eggs are bound to lipovitellin 1 by a Schiff base linkage, Zool Sci. 8, 855–S63.

    CAS  Google Scholar 

  • Kastner, P., Chambon, P., and Leid, M. (1994) Role of nuclear retinoic acid receptors in the regulation of gene expression, in“Vitamin A in Health and Disease” R. Blomhoff, ed.,Marcel Dekker, Inc., New York, p. 189.

    Google Scholar 

  • Kraft, J. C., Kimelman, D., and Juchau, M. R. (1995) Xenopus laevis: A model system for the study of embryonic retinoid metabolism: I. Embryonic metabolism of 9-cis-and all-trans-retinals and retinols to their corresponding acid forms, Drug Metab. Dispos. 23, 72–82.

    PubMed  CAS  Google Scholar 

  • Lee, M.-O., Manthey, C. L., and Sladek, N. E. (1991) Identification of mouse liver aldehyde dehydrogenases that catalyze the oxidation of retinaldehyde to retinoic acid, Biochem. Pharmacol 42, 1279–1285.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z. J., Sun, Y. J., Rose, J., Chung, Y. J., Hsiao, C. D., Chang, W. R., Kuo, I., Perozich, J., Lindahl, R., Hempel, J., and Wang, B. C. (1997) The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold, Nature Struct. Biol. 4, 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M. (1994) Role of retinoids in embryonic development, in“Vitamin A in Health and Disease” R. Blomhoff, ed., Marcel Dekker, Inc., New York, p. 289.

    Google Scholar 

  • Maden, M., Gale, E., Kostetskii, I., and Zile, M. H. (1996) Vitamin A-deficient quail embryos have half a hind-brain and other neural defects, Curr. Biol 6, 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) The retinoid receptors, in “The Retinoids: Biology, Chemistry, and Medicine, 2nd Edition” M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds., Raven Press, Ltd., New York, p. 319.

    Google Scholar 

  • McCaffery, P., Lee, M.-O., Wagner, M. A., Sladek, N. E., and Dräger, U. C. (1992) Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina, Development 115, 371–382.

    PubMed  CAS  Google Scholar 

  • Niederreither, K., McCaffery, P., Dräger, U. C., Chambon, P., and DollĂ©, P. (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development, Mech. Dev. 62, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J., Zirngibl, R., Cado, D., Shago, M., and Giguère, V. (1991) Expression of a retinoic acid response ele-ment-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis, Genes Dev. 5, 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  • Ruberte, E., Dolle, P., Chambon, P., and Morriss-Kay, G. (1991) Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos, Development 111, 45–60.

    PubMed  CAS  Google Scholar 

  • Schuh, T. J., Hall, B. L., Creech Kraft, J., Privalsky, M. L., and Kimelman, D. (1993) v-erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis, Development 119, 785–798.

    PubMed  CAS  Google Scholar 

  • Sharpe, C. R. and Goldstone, K. (1997) Retinoid receptors promote primary neurogenesis in Xenopus, Development 124, 515–523.

    CAS  Google Scholar 

  • Sive, H. L., Draper, B. W., Harland, R. M., and Weintraub, H. (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis, Genes Dev. 4, 932–942.

    CAS  Google Scholar 

  • Steinmetz, C. G., Xie, P. G., Weiner, H., and Hurley, T. D. (1997) Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion, Structure 5, 701–711.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliou, V., Reuter, S. F., Kozak, CA., and Nebert, D. W. (1995) Mouse class 3 aldehyde dehydrogenases, Adv. Exp. Med. Biol 372, 151–158.

    PubMed  CAS  Google Scholar 

  • Vasiliou, V., Kozak, CA., Lindahl, R., and Nebert, D. W. (1996) Mouse microsomal class 3 aldehyde dehydrogenase: AHD3 cDNA sequence, inducibility by dioxin and clofibrate, and genetic mapping, DNA Cell Biol. 15, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, M., Han, B., and Jessell, T. M. (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay, Development 116, 55–66.

    PubMed  CAS  Google Scholar 

  • Wang, X. S., Penzes, P., and Napoli, J. L. (1996) Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli-Recognition of retinal as substrate, J. Biol. Chem. 271, 16288–16293.

    Article  PubMed  CAS  Google Scholar 

  • Xie, P. G., Parsons, S. H., Speckhard, D. C., Bosron, W. F., and Hurley, T. D. (1997) X-ray structure of human class IV sigma alcohol dehydrogenase-Structural basis for substrate specificity, J. Biol. Chem. 272, 18558–18563.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.-N., Davis, G. J., Hurley, T. D., Stone, C. L., Li, T.-K., and Bosron, W. F. (1994) Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction, Alcohol. Clin. Exp. Res. 18, 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. N., Bosron, W. F., and Hurley, T. D. (1997) Structure of human chi alcohol dehydrogenase: A glutathione-dependent formaldehyde dehydrogenase, J. Mol. Biol. 265, 330–343.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A., Rzhetsky, A., Hsu, L. C., and Chang, C (1998) Human aldehyde dehydrogenase gene family, Eur. J. Biochem. 251, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Zgombic-Knight, M., Ang, H. L., Foglio, M. H., and Duester, G. (1995) Cloning of the mouse class IV alcohol dehy drogenase (retinol dehydrogenase) cDNA and tissue-specific expression patterns of the murine ADH gene family, J. Biol. Chem. 270, 10868–10877.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D., McCaffery, P., Ivins, K. J., Neve, R. L., Hogan, P., Chin, W. W, and Dräger, U. C. (1996) Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase, Eur. J. Biochem. 240, 15–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duester, G. (1999). Function of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Gene Families in Retinoid Signaling. In: Weiner, H., Maser, E., Crabb, D.W., Lindahl, R. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 7. Advances in Experimental Medicine and Biology, vol 463. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4735-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4735-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7146-5

  • Online ISBN: 978-1-4615-4735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics