Skip to main content

Muscle Polymorphism and Gelling Properties of Myofibrillar Proteins from Poultry, Mammals, and Fish

  • Chapter
Quality Attributes of Muscle Foods

Abstract

Depending on their metabolic and contractile activities, muscles are classified in different types from fast-twitch glycolytic (white) to slow-twitch oxidative (red) muscles with several “intermediate” ones. Contractile proteins, especially myosins, are present in the myofibers of these various muscle types as different isoforms. The respective proportions of these isoforms give distinct functional properties. This review deals with the relation between muscle polymorphism and gelling properties of proteins which are largely involved in the elaboration of texture of meat, poultry and fish, as well as derived products in relation to water holding capacity and lipid retention ability. Protein dispersions from different muscle types exhibit distinct rheological behaviors during heating. Their sensitivities to parameters such as concentration, heating rate or physico-chemical environment (pH and ionic strength) are greatly dependent on muscle type. The influence of amino-acid composition and hydrophobicity of myosin isoforms on the functionality of muscle proteins is discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M.T.; Pearson, A.M., Price, J.F.; Hooper, G.R. Ultrastructural changes during autolysis of red and white porcine muscle. J Food Sci 1977, 42, 1185–1188

    Article  Google Scholar 

  • Aalhus, J. L.; Price, M. A. Endurance-exercised growing sheep. 1. Postmortem and histological changes in skeletal muscles. Meat Sci 1991a, 29 43–56

    Article  CAS  Google Scholar 

  • Acton, J. C.; Ziegler, G. R.; Burge, D. L. Functionality of muscle constituents in the processing of comminuted meat product. CRC Crit. Rev. Food Sci. Nut. 1983, 18 99–121

    Article  CAS  Google Scholar 

  • Amato, P. M.; Hamann, D. D.; Ball, H. R. Jr.; Foegeding, E. A. Influence of poultry species, muscle groups, and NaC1 level on strength, deformability, and water retention in heat-set gels. J. Food Sci 1989, 54, 1136–1140, 1157

    Article  Google Scholar 

  • Asghar, A.; Morita, J.; Samejima, K.; Yasui, T. Biochemical and functional characteristics of myosin from red and white muscle of chicken as influenced by nutritional stress. Agric. Biol. Chem 1984, 48 2217–2224

    Article  CAS  Google Scholar 

  • Asghar, A.; Samejima, K.; Yasui, T. Functionality of muscle proteins in gelation mechanisms of structured meat products. C.R.CCrit. Rev. Food Sci. Nut 1985, 22 27–106

    Article  CAS  Google Scholar 

  • Ashmore, C.R.; Doerr, L. Comparative aspects of muscle fibre types in different species. Exp. Neurol 1971, 31 408–418

    Article  CAS  Google Scholar 

  • Autio, K.; Kiesvaara, M.; Polvinen, K. Heat-induced gelation of minced rainbow trout (Salmo gairdneri): Effect of pH, sodium chloride and setting. J. Food Sci 1989, 54,805–808,823

    Article  CAS  Google Scholar 

  • Bacou, F.; Vigneron, P. Evolution périnatale des voies métaboliques glycolytique et oxydative de divers types de muscles squelettiques du lapin et du poulet. Ann. Biol. Anim. Bioch. Biophys 1976, 16 675–686

    Article  CAS  Google Scholar 

  • Bakir, H. M.; Hultin, H. O.; Kelleher, S. D. Some properties of fish gels made from several northwest Atlantic spe-cies in the presence of high and low salt. J. Food Proces. Preserv 1994, 18 103–117

    Article  CAS  Google Scholar 

  • Barany, M.; Barany, K.; Reckard, T.; Volpe, A. Myosin of fast and slow muscle of the rabbit. Archs. Biochem. Biophys 1965, 109 185–191

    Article  CAS  Google Scholar 

  • Barbut, S.; Mittal, G. S. Effect of heating rate on meat batter stability, texture and gelation. J. Food Sci 1990, 55, 334–337

    Article  Google Scholar 

  • Barbut, S.; Mittal, G. S. Effects of pH on physical properties of white and dark turkey meat. Poultry Sci 1993, 72, 1557–1565

    Article  Google Scholar 

  • Beas, V. E.; Crupkin, M.; Trueco, R. E. Gelling properties of actomyosin from pre-and post-spawning hake (Merluccius hubbsi). J. Food Sci 1988, 53, 1322–1326

    Article  CAS  Google Scholar 

  • Bodwell, C. E.; MacClain, P. E. Chemistry of animal tissue. Proteins. In “The science of meat and meat products”, 2nd Ed. (J.F. Price and B.S. Schweigert, Eds), W.H. Freeman and Co., San Francisco, 1971, 78–132

    Google Scholar 

  • Borejdo, J. Mapping of hydrophobic sites on the surface of myosin and its fragments. Biochem 1983, 22, 1182–1187

    Article  CAS  Google Scholar 

  • Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Gélification thermique des protéines myofibrillaires et de la myosine. Ind. Alim. Agric 1994, 111, 16–21

    CAS  Google Scholar 

  • Boyer, C.; Joandel, S.; Roussilhes, V.; Culioli, J.; Ouali, A. Heat-induced gelation of myofibrillar proteins and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci 1996a, 61 1138–1142

    Article  CAS  Google Scholar 

  • Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Ionic strength effects on heat-induced gelation of myofibrils and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci 1996b, 61 1143–1148

    Article  CAS  Google Scholar 

  • Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Determination of surface hydrophobicity of fast and slow myosins from rabbit skeletal muscles: Implication in heat-induced gelation. J. Sci. Food Agric 1996c, 72 367–375

    Article  CAS  Google Scholar 

  • Brandstetter, A. M.; Picard, B.; Geay, Y. Muscle fibre characteristics in four muscles of growing male cattle. I.Postnatal differentiation. Livestock Prod. Sci. 1998a, 53, 15–23

    Article  Google Scholar 

  • Brandstetter, A. M.; Picard, B.; Geay, Y. Muscle fibre characteristics in four muscles of growing male cattle. II. Effect of castration and feeding level. Livestock Prod. Sci. 1998b, 53, 25–36

    Article  Google Scholar 

  • Briand, M.; Talmant, A.; Briand, Y.; Monin, G.; Durand, R. Metabolic types of muscles in the sheep: I. Myosin ATPase, glycolytic, and mitochondrial enzyme activities. Eur. J. Appl. Physiol 1981, 46 347–358

    Article  CAS  Google Scholar 

  • Brooke, M. H.; Kaiser, K. K. Three “ myosin ATPase ” systems. The nature of their pH liability and sulphydryl de-pendence. J. Histochem. Cvtochem 1970, 18 670–672

    Article  CAS  Google Scholar 

  • Brownsey, G.J.; Morris, V.J. Mixed and filled gels. In Food Structure - Its Creation and Evaluation” (J M. V. Blandshard and J. R. Mitchell, Eds) Butterworths, London, UK. 1988, 7–23

    Google Scholar 

  • Camou, J. P.; Sebranek, J. G. Gelation characteristics of muscle proteins from pale, soft, exudative (PSE) pork. Meat Sci 1991, 30 207–220

    Article  CAS  Google Scholar 

  • Careche, M.; Currall, J.; Mackie, I. M. A study of the effects of different factors on the heat-induced gelation of cod (Gadus morhua, L) actomyosin using response surface methodology. Food Chem 1991, 42 39–55

    Article  CAS  Google Scholar 

  • Carpene, E.; Veggeti, A.; Mascarello, F. Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J. Fish Biol 1982, 20, 379–396

    Article  CAS  Google Scholar 

  • Chan, J. K.; Gill, T. A.; Paulson, A. T. Cross-linking of myosin heavy chains from cod, herring and silver hake during thermal setting. J. Food Sci 1992a, 57, 906–912

    Article  CAS  Google Scholar 

  • Chan, J. K.; Gill, T. A.; Paulson, A. T. The dynamics of thermal denaturation of fish myosins. Food Res. Int 1992b, 25 117–123

    Article  CAS  Google Scholar 

  • Choe, I. S.; Morita, J. I.; Yamamoto, K.; Samejima, K.; Yasui, T. Heat-induced gelation of myosins/subfragments from chicken leg and breast muscles at high ionic strength and low pH. J. Food Sci 1991, 56 884–890

    Article  CAS  Google Scholar 

  • Cofrades, S.; Careche, M.; Carballo, J.; Colmenero, F. J. Thermal gelation of chicken, pork and hake (Merluccius merluccius, L) actomyosin. Meat Sci. 1997, 47 157–166

    Article  CAS  Google Scholar 

  • Culioli, J.; Barnier, V.; de Lamballerie, M.; Ouali, A. Propriétés gélifiantes des protéines myofibillaires et de la myosine. Viandes Prod. Carnés 1990, 11 313

    Google Scholar 

  • Culioli, J.; Boyer, C.; Vignon, X.; Ouali, A. Heat-induced gelation properties of myosin - Influence of purification and muscle type. Sci. Alim 1993, 13 249–260

    CAS  Google Scholar 

  • Daum-Thunberg, D. L.; Foegeding, E. A.; Ball, H. R. Rheological and water-holding properties of comminuted turkey breast and thigh - Effects of initial pH. J. Food Sci 1992, 57 333–337

    Article  Google Scholar 

  • Davies, J. R.; Ledward, D. A.; Bardsley, R. G.; Poulter, R. G. Species dependence of fish myosin stability to heat and frozen storage. Int. J. Food Sci. Technol 1994, 29 287–301

    CAS  Google Scholar 

  • Davies, M. L. F.; Johnston, I. A.; Vandewal, J. Muscle fibers in rostral and caudal myotomes of the Atlantic cod (Gadus morhua L) have different mechanical properties. Physiol. Zool 1995, 68 673–697

    Google Scholar 

  • De Lamballerie, M.; Chraiti, F.; Culioli, J.; Ouali, A. Gelation properties of bovine myofibrillar proteins. Sci. Alim 1993a, 13 237–247

    Google Scholar 

  • De Lamballerie-Anton, M.; Culioli, J.; Ouali, A.. Gélification thermique des protéines myofibrillaires de dinde. 11th European Symposium on the Quality of Poultry Meat 1993b, 1 300

    Google Scholar 

  • Egelandsdal, B.; Fretheim, K.; Harbitz, O. Fatty acids and analogs reduce thermal stability and improve gel formability of myosin. J. Food Sci 1985, 50 1399–1402

    Article  CAS  Google Scholar 

  • Egelansdal, B.; Fretheim, K.; Samejima, K. Dynamic rheological measurements on heat-induced myosin gels: Effects of ionic strengh, protein concentration and the addition of adenosine triphosphate and pyrophosphate. J. Sci. Food Agric 1986, 37, 915–926

    Article  Google Scholar 

  • Egelandsdal, B.; Martinsen, B.; Autio, K. Rheological parameters as predictors of protein functionality - A model study using myofibrils of different fiber-type composition. Meat Sci 1995, 39 97–1 l 1

    Article  CAS  Google Scholar 

  • Fauconneau, B.; Bonnet, S.; Douirin, C.; de Guilbert, C.; Lefèvre, F.; Laroche, M.; Bauvineau, C. Assessment of muscle biochemical and histochemical criteria for flesh quality in salmonids. In Measures for Success P. Kestemont, J. Muir, F. Sevila and P. Williot (Eds). Cemagref Edition, Paris. 1994, p. 225–238

    Google Scholar 

  • Fauconneau, B.; Alamidurante, H.; Laroche, M.; Marcel, J.; Vallot, D. Growth and meat quality relations in carp. Aquaculture 1995, 129 265–297

    Article  Google Scholar 

  • Foegeding, E. A.. Functional properties of turkey salt-soluble proteins. J. Food Sci 1987, 52 1495–1499

    Article  CAS  Google Scholar 

  • Fretheim, K.; Samejima, K.; Egelandsdal, B. Myosins from red and white bovine muscles: Part-I Gel strength (elasticity) and water-holding capacity of heat-induced gels. J. Food Chem 1986, 22 107–121

    Article  CAS  Google Scholar 

  • Gann, G. L.; Merkel, R. A. Ultrastructural changes in bovine Longissimus muscle during postmortem ageing. Meat Sci 1978, 2, 129–144

    Article  CAS  Google Scholar 

  • Gauthier, G. F. Skeletal muscle fiber types. Myology 1986, 1, 255–283

    Google Scholar 

  • Gauthier, G. F.; Lowey, S.; Benfield, P. A.; Hobbs, A. W. Distribution and properties of myosin isozymes in developing avian and mammalian muscle fibers. J. Cell Biol 1982, 92, 471–484

    Article  CAS  Google Scholar 

  • Gauvry, L. Le polymorphisme des chaînes lourdes de la myosine du muscle squelettique chez les poissons. Caractérisation d’ADN complémentaires de formes développementales chez la truite et d’un gène thermo-dépendant chez la carpe. Thèse de doctorat de l’Université de Rennes I. 1995

    Google Scholar 

  • Guo, X. F.; Nakaya, M.; Watabe, S. Myosin subfragment-1 isoforms having different heavy chain structures from fast skeletal muscle of thermally acclimated carp. J. Biochem 1994, 116 728–735

    CAS  Google Scholar 

  • Hastings, R. J.; Keay, J. N.; Young, K. W. The properties of surimi and kamaboko gels from nine British species of fish. Int. J. Food Sci. Technol 1990, 25 281–294

    Article  CAS  Google Scholar 

  • Hay, J. D.; Currie R. W.; Wolfe, F. H. Effect of postmortem ageing on chicken muscle fibrils. J. Food Sci. 1973, 38, 981

    Article  Google Scholar 

  • Hermansson, A. M.; Harbitz, O.; Langton, M. Formation of two types of gels from bovine myosin. J. Sci. Food Agric. 1986, 37, 69–84

    Article  CAS  Google Scholar 

  • Ishioroshi, M.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin: Factors of pH and salt concentrations. J. Food Sci 1979, 44 1280–1284

    Article  CAS  Google Scholar 

  • Lshioroshi, M. Samejima, K.; Arie, Y.; Yasui, T.Effect of blocking the myosin-actin interaction in heat-induced gelation of myosin in the presence of actin. Agric. Biol. Chem 1980, 44, 2185–2194

    Article  Google Scholar 

  • lshioroshi, M.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin filaments at a low salt concentration. Agric. Biol. Chem 1983, 47, 2809–2816

    Article  Google Scholar 

  • Itoh, Y.; Maekawa, T.; Suwansakornkul, P.; Obatake, A. Seasonal variation of gel-forming characteristics of three lizardfish species. Fish. Sci 1995, 61 942–947

    Article  CAS  Google Scholar 

  • Jiménez-Colmenero, F.; Careche, J.; Carballo, J.; Cofrades, S. Influence of thermal treatment on gelation of actomyosin from different myosystems. J. Food Sci 1994, 59 211–220

    Article  Google Scholar 

  • Joandel-Monier, S. Influence du polymorphisme musculaire sur les propriétés gélifiantes des protéines myofibrillaires. Thèse de doctorat de l’Université de Blaise Pascal - Clermont-Ferrand II. 1997

    Google Scholar 

  • Johnson, T. P.; Bennett, A. F. The thermal acclimation of burst escape performance in fish: An integrated study of molecular and cellular physiology and organismal performance. J. Exp. Biol 1995, 198 2165–2175

    Google Scholar 

  • Johnson, T. P.; Bennett, A. F.; Mclister, J. D. Thermal dependence and acclimation of fast start locomotion and its physiological basis in rainbow trout (Oncorhynchus mykiss). Physiol. Zool 1996, 69, 276–292

    CAS  Google Scholar 

  • Johnston, I. A. Biochemistry of myosins and contractile properties of fish skeletal muscle. Mol. Physiol 1982, 2 15–29

    CAS  Google Scholar 

  • Kanoh, S.; Suzuki, T.; Maeyama, K.; Takewa, T.; Watabe, S.; Hashimoto, K. Comparative studies on ordinary and dark muscles of tuna fish. Nippon Suisan Gakkaishi 1986, 52 1807–1816

    Article  CAS  Google Scholar 

  • Kanoh, S.; Polo, J. M. A.; Kariya, Y.; Kaneko, T.; Watabe, S.; Hashimoto, K. Heat-induced textural and histologi-cal changes of ordinary and dark muscles of yellowfin tuna. J. Food Sci 1988, 53, 673–678

    Article  Google Scholar 

  • Karasinski, J. Diversity of native myosin and myosin heavy chain in fish skeletal muscles. Comp. Biochem Physiol 1993, 106B 1041–1047

    CAS  Google Scholar 

  • Kiessling, A.; Storebakken, T.; Asgard, T.; Kiessling, K. H. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age - I. Growth dynamics. Aquaculture 1991a, 93 335–356

    Article  Google Scholar 

  • Kiessling, A.; Kiessling, K. H.; Storebakken, T.; Asgard, T. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age - II. Activity of key enzymes in energy metabolism. Aquaculture 1991b, 93 357–372

    Article  CAS  Google Scholar 

  • Kiessling, A.; Larsson, L.; Kiessling, K. H.; Lutes, P. B.; Storebakken, T.; Hung, S. S. S. Spawning induces a shift in energy metabolism from glucose to lipid in rainbow trout white muscle. Fish Physiol. Biochem 1995, 14 439–448

    Article  CAS  Google Scholar 

  • Kijowski, J. M.; Mast, M. G. Thermal properties of proteins in chicken broiler tissue. J. Food Sci 1988, 2, 363–366

    Article  Google Scholar 

  • Kim, S. H.; Carpenter, J. A.; Lanier, T. C.; Wicker, L. Setting response of Alaska pollock surimi compared with beef myofibrils. J. Food Sci 1993, 58 531–534

    Article  Google Scholar 

  • Laborde, D.; Talmant, A.; Monin, G. Activités enzymatiques métaboliques et contractiles de 30 muscles du porc. Relations avec le pH ultime après la mort. Reprod. Nutr. Dévelop 1985, 25 619–628

    Article  CAS  Google Scholar 

  • Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K. Thermal gelation of pork, beef, fish, chicken and turkey muscles as affected by heating rate and pH. J. Food Sci 1995a, 60 936–940, 945

    Article  CAS  Google Scholar 

  • Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K. Thermal gelation of myofibrils from pork, beef, fish, chicken and turkey. J Food Sci 1995b, 60 941–945

    Article  CAS  Google Scholar 

  • Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Can, T. R.; McKeith, F. K. Thermal gelation proper-ties of protein fractions from pork and chicken breast muscles. J. Food Sci 1995c, 60 742–747

    Article  CAS  Google Scholar 

  • Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K Initial post-mortem por-cine muscle pH effect on heat-induced gelation properties. J. Muscle Food 1995d, 6 403–412

    Article  Google Scholar 

  • Lavelle, C. L.; Foegeding, E. A. Gelation of turkey breast and thigh myofibrils - Effects of pH, salt and tempera-ture. J. Food Sci 1993, 58 727–730

    Article  CAS  Google Scholar 

  • Lefaucheur, L.; Vigneron, P. Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat Sci 1986, 16 199–216

    Article  CAS  Google Scholar 

  • Lefèvre, F. Propriétés thermogélifiantes des myofibrilles et texture de la chair de truite. Thèse de doctorat de l’Université de Blaise Pascal - Clermont-Ferrand 11. 1997

    Google Scholar 

  • Lefevre, F.; Fauconneau, B.; Ouali, A.; Culioli, J. Thermal gelation of brown trout myofibrils: Effect of muscle type, heating rate and protein concentration. J. Food Sci 1998, 63 299–304

    Article  CAS  Google Scholar 

  • Lepetit, J.; Sale, P.; Ouali, A. Postmortem evolution of rheological properties of the myofibrillar structure. Meat Sci 1986, 16, 161–168

    Article  CAS  Google Scholar 

  • Liu, G.; Xiong, Y. L. L. Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins. J. Agric. Food Chem 1996, 44 779–784

    Article  CAS  Google Scholar 

  • Liu, M. N.; Foegeding, E. A.; Wang, S. F.; Smith, D. M.; Davidian, M. Denaturation and aggregation of chicken myosin isoforms. J. Agric. Food Chem 1996, 44 1435–1440

    Article  CAS  Google Scholar 

  • Liu, M. N.; Foegeding, E. A. Thermally induced gelation of chicken myosin isoforms. J. Agric. Food Chem 1996, 44 1441–1446

    Article  CAS  Google Scholar 

  • Lo, J. R.; Mochizuki, Y.; Nagashima, Y.; Tanaka, M.; Iso, N.; Taguchi, T. Thermal transitions of myosins subfragments from black marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci 1991, 56 954–957

    Article  CAS  Google Scholar 

  • Lowey, S.; Benfield, P. A.; Gauthier G. F.; Leblanc, D. D.; Waller, G. S. Myosin isozymes in avian skeletal muscles. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J. Muscle Res. Cell Motil. 1983, 4, 695–716

    Article  CAS  Google Scholar 

  • Martinez, I.; Ofstad, R.; Olsen, R. L. Intraspecific myosin light chain polymorphism in the white muscle of herring (Clupea harengus harengus L.). Febs Lett 1990, 265 23–26

    Article  CAS  Google Scholar 

  • Martinez, I.; Christiansen, J. S.; Ofstad, R.; Olsen, R. L. Comparison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic chan Salvelinus alpinus (L.). Eur J. Biochem 1991, 195 743–753

    Article  CAS  Google Scholar 

  • Martinez, I.; Bang, B.; Hatlen, B.; Blix, P. Myofibrillar proteins in skeletal muscles of parr, smolt and adult Atlantic salmon (Salmo salar L.). Comparison with another salmonid, the Arctic chan Salvelinus alpinus (L.). Comp. Biochem. Physiol 1993, 106B 1021–1028

    Google Scholar 

  • Monin, G.; Ouali, A. Muscle differentiation and meat quality. In “Developments in Meat Science”, Edited by Ralston Lawrie, 1991, 5, 89–157

    Google Scholar 

  • Montejano, J. G.; Hamann, D. D.; Lanier, T. C. Final strengths and rheological changes during processing of thermally induced fish muscle gels. J. Rheol 1983, 27 557–579

    Article  Google Scholar 

  • Montejano, J. G.; Hamann, D. D.; Lanier, T. C. Thermally induced gelation of selected comminuted muscle systems - Rheological changes during processing, final strengths and microstructure. J. Food Sci 1984, 49 1496–1505

    Article  CAS  Google Scholar 

  • Morioka, K.; Shimizu, Y. Contribution of sarcoplasmic proteins to gel formation of fish meat. Nippon Suisan Gakkaishi 1990, 56 929–933

    Article  CAS  Google Scholar 

  • Morita, J. I.; Choe, I. S.; Yamamoto, K.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin from leg and breast muscles of chicken. Agric. Biol. Chem 1987, 51 2895–2900

    Article  CAS  Google Scholar 

  • Nakaya, M.; Kakinuma, M.; Watabe, S.; Ooi, T. Differential scanning calorimetry and CD spectrometry of acclimation temperature-associated types of carp light meromyosin. Biochem 1997, 36 9179–9184

    Article  CAS  Google Scholar 

  • Nakayama, T.; Sato, Y. Relationship between binding quality of meat and myofibrillar proteins: (IV) Contribution of native tropomyosin and actin in myosin B to rheological properties of heat set minced-meat gel. J. Texture Stud 1971, 2 475–488

    Article  CAS  Google Scholar 

  • Ndi, E. E.; Brekke, C. J. Thermal gelation of duck breast and leg muscle proteins. J. Muscle Food 1994, 5 27–36. Niwa, E.; Sato, K.; Suzuki, R.; Nakayama, T.; Hamada, I. Fluorometric study of setting properties of fish flesh sol. Bull. Jpn. Soc. Sci. Fish 1981, 47 817–821

    Article  Google Scholar 

  • Niwa, E. Chemistry of Surimi Gelation. In “Surimi Technology”, Lanier T.C. and Lee C.M. Eds. New York, USA. 1992: 389–427

    Google Scholar 

  • Niwa, E.; Matsuura, Y.; Nowsad, A. A. K.; Kanoh, S. Species-specificity of suwari gel-formability of fish flesh paste in which transglutaminase was inactivated. Fish. Sci 1995, 61 107–109

    Article  CAS  Google Scholar 

  • Northcutt, J. K.; Lavelle, C. L.; Foegeding, E. A. Gelation of turkey breast and thigh myofibrils: Changes during isolation of myofibrils. J Food Sci 1993, 58 983–986

    Article  CAS  Google Scholar 

  • Nowsad, A. A. K.; Kanoh, S.; Niwa, E. Setting of transglutaminase-free actomyosin paste prepared from Alaska pollack surimi. Fish. Sci 1994, 60 295–297

    CAS  Google Scholar 

  • Ouali, A.; Gatellier, P.; Dufour, E. Caractérisation des propriétés hydrophobes de la myosine de differents types musculaires. Viandes et Produits Carnés 1988, 9, 198

    Google Scholar 

  • Ouali, A. Meat tenderization: Possible causes and mechanisms. A review. J. Muscle Foods 1990, 1, 129–165

    Article  Google Scholar 

  • Ouali, A. Sensitivity to ionic strength of Mg-Ca enhanced ATPase activity as an index of myofibrillar ageing in beef. Meat Sci 1984, 11,79–85.

    Article  CAS  Google Scholar 

  • Park, S.; Brewer, M. S.; Mckeith, F. K.; Bechtel, P. J.; Novakofski, J. Salt, cryoprotectants and preheating tem-perature effects on surimi-like material from beef or pork. J. Food Sci 1996a, 61 790–795

    Article  CAS  Google Scholar 

  • Park, S.; Brewer, M. S.; Novakofski, J.; Bechtel, P. J.; Mckeith, F. K. Process and characteristics for a surimi-like material made from beef or pork. J. Food Sci 1996b, 61 422–427

    Article  CAS  Google Scholar 

  • Parsons, N.; Knight, P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agric 1990, 51, 71–90

    Article  CAS  Google Scholar 

  • Peter, J. B.; Barnard, R. J.; Edgerton, V. R.; Gillespie, C. A.; Stempel, K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochem 1972, 11 2627–2633

    Article  CAS  Google Scholar 

  • Petersen, J.S.; Henckel, P.; Maribo, H.; Oksbjerg, N., Sorensen, M.T. Muscle metabolic traits, post mortem-pH-decline and meat quality in pigs subjected to regular physical training and spontaneous activity. J. Muscle Foods 1997, 46, 259–275

    CAS  Google Scholar 

  • Pette, D.; Staron, R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol 1990, 116 1–76

    CAS  Google Scholar 

  • Reiser, P. T.; Moss, R. L.; Giulian, G. G.; Greaser, M. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J. Biol. Chem 1985, 260, 9077–9080

    CAS  Google Scholar 

  • Remignon, H.; Gardahaut, M.F.; Marche, G.; Ricard, F.H. Selection of rapid growth increases the number and the size of muscle fibres without changing their typing in chicken. J. Muscle Res. Cell Motil 1995, 16, 95–102

    Article  CAS  Google Scholar 

  • Robe, G. H.; Xiong, Y. L. L. Dynamic rheological studies on salt-soluble proteins from three porcine muscles. Food Hydrocolloids 1993, 7 137–146

    Article  CAS  Google Scholar 

  • Robson, R. M. Myofibrillar and cytoskeletal structures and proteins in mature skeletal muscle cells. In “Expression of tissue proteinases and regulation of protein degradation as related to meat quality” (A. Ouali, D. Demeyer and F. J. M. Smulders Eds). ECCEAMST, Utrecht, The Netherlands. 1995, 267–288

    Google Scholar 

  • Roura, S. I.; Crupkin, M. Biochemical and functional properties of myofibrils from pre-and post-spawned hake (Merluccius hubbsi Marini) stored on ice. J. Food Sci 1995, 60 269–272

    Article  CAS  Google Scholar 

  • Rushbrook, J. I.; Huang, J. M.; Weiss, C.; Siconolfibaez, L.; Yao, T.,T.; Becker, E.; Feueruran, M. Characterization of the myosin heavy chains of avian fast skeletal muscles at the protein and mRNA levels. J. Muscle Res. Cell Motil 1997, 18, 449–463

    Article  CAS  Google Scholar 

  • Samejima, K.; Ishioroshi, M.; Yasui, T. Heat induced gelling properties of actomyosin: Effect of tropomyosin and troponin. Agric. Biol. Chem 1982, 46 535–540

    Article  CAS  Google Scholar 

  • Samejima, K.; Yamauchi, H.; Asghar, A.; Yasui, T. Role of myosin heavy chains from rabbit skeletal muscle in the heat-induced gelation mechanism. Agric.Biol.Chem 1984, 48 2225–2232

    Article  CAS  Google Scholar 

  • Samejima, K.; Oka, Y.; Yamauchi, H.; Asghar, A.; Yasui, T. Effects of temperature, actin-myosin ratio, pH, and salt and protein concentrations on heat-induced gelling of cardiac myosin and reconstituted actomyosin. Agric. Biol. Chem 1986, 50 2101–2110

    Article  CAS  Google Scholar 

  • Samejima, K.; Kuwayama, K.; Yamamoto, K.; Asghar, A.; Yasui, T. Influence of reconstituted dark and light chicken muscle myosin filaments on the morphology and strength of heat-induced gels. J. Food Sci 1989, 54, 1158–1168

    Article  CAS  Google Scholar 

  • Samejima, K.; Ishioroshi, M.; and Livera, W. C. D. Effect of added fatty acids on heat-induced gelation of myosin. 36th Int. Cong. Meat Sci. Technol 1990, 1 306–311

    Google Scholar 

  • Sano, T.; Noguchi, S. F.; Tsuchiya, T.; Matsumoto J. J. Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. J. Food Sci 1988, 53 924–928

    Article  CAS  Google Scholar 

  • Sano, T.; Noguchi, S. F.; Matsumoto, J. J.; Tsuchiya, T. Role of F-actin in thermal gelation of fish actomyosin. J. Food Sci 1989, 54 800–804

    Article  CAS  Google Scholar 

  • Schiaffino, S.; Salviati, G. Molecular diversity of myofibrillar proteins: Isoforms analysis at the protein and mRNA level. Methods in Cell Biology Edited by Emerson, C.P. and Sweeney, H.L. Academic Press Inc. 1998, 52 349–369

    Google Scholar 

  • Shimizu, Y.; Wendakoon, C. N. Effects of maturation and spawning on the gel-forming ability of lizardfish (Saurida elongata) muscle tissues. J.Sci. Food Agric 1990, 52 331–338

    Article  CAS  Google Scholar 

  • Shimizu, Y.; Machida, R.; Takenami, S. I. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 1981, 47 95–104

    Article  Google Scholar 

  • Skaara, T.; Regenstein, J. M. The structure and properties of myofibrillar proteins in beef, poultry, and fish. J. Muscle Foods 1990, 1, 269–291

    Article  Google Scholar 

  • Smith, D. M. Factors influencing heat-induced gelation of muscle proteins. In “Interactions of Food Proteins” (N. Parris and R. Barford, Eds) ACS Symp. Ser., USA. 1991, 454 243–256

    Chapter  Google Scholar 

  • Sreter, F. A.; Balint, M.; Gergely, J. Structural and functional changes of myosin during development. Comparison with adult fast, slow and cardiac myosin. Dev. Biol 1975, 46,317–325

    Article  CAS  Google Scholar 

  • Stabursvik, E.; Martens, H. Thermal denaturation of proteins in Post rigor muscle tissue as studied by thermal scanning calorimetry. J. Sc. Food Agric 1980, 31, 1034–1042

    Article  CAS  Google Scholar 

  • Stickland, N. C. Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J. Anat 1983, 137, 323–333

    Google Scholar 

  • Stone, A. P.; Stanley, D. W. Mechanisms of fish muscle gelation. Food Res. Int 1992, 25 381–388

    Article  CAS  Google Scholar 

  • Taguchi, T.; Lo, J. R.; Tanaka, M.; Nagashima, Y.; Amano, K. Thermal activation of actomyosin Mg-ATPases from ordinary and dark muscles of tuna and sardine. J. Food Sci 1989, 54 1521–1523,1529

    Google Scholar 

  • Talmant, A.; Briand, M.; Briand, Y.; Monin, G.; Durand, R. Metabolic type of muscles of the sheep. III. Evolution with age and influence of sex. Eut: J. Appl. Phrsiol 1982, 49 197–208

    Article  CAS  Google Scholar 

  • Tanaka, M.; Lo, J. R.; Yang, C. C.; Nagashima, Y.; Taguchi, T. Thermal gelation of dark meat and myosin pastes from sardine and tuna. J. Tokyo Univ Fish 1988, 75 257–261

    Google Scholar 

  • Tejada, M. Gelation of myofibrillar fish proteins. Rev. Esp. Cienc. Tecnol. Alim 1994, 34 257–273

    CAS  Google Scholar 

  • Totland, G.K.; Kryvi, H. Distributions patterns of muscle fibre types in major muscles of the bull (Bos taunts). Anat. Embryol 1991, 184 441–450

    Article  CAS  Google Scholar 

  • Vigneron, P.; Bacou, F.; Nougues, J.; Lefaucheur, L. Croissance et développement des fibres musculaires: Facteurs de variation. Viande et produits carnés 1983, Special Issue, 7–15

    Google Scholar 

  • Watabe, S.; Hashimoto, K. Myosins from white and dark muscles of mackerel - Some physico-chemical and enzymatic properties. J. Biochem 1980, 87, 1491–1499

    CAS  Google Scholar 

  • Watabe, S.; Maruyama, J.; Hashimoto, K. Myofibrillar ATPase activity of mackerel ordinary and dark muscles. Nippon Suisan Gakkaishi 1983, 49 655

    CAS  Google Scholar 

  • Watabe, S.; Hwang, G.C.; Nakaya, M.; Guo, X.F.; Okamoto, Y. Fast skeletal myosin isoforms in thermally acclimated carp. J. Biochem. Tokyo 1992, 111 113–122

    CAS  Google Scholar 

  • Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K.; Bouveret, P., Pinset-Härström, I. Three myosin heavy chains isozymes appear sequentially in rat muscle development. Nature 1981, 292, 805–809

    Article  CAS  Google Scholar 

  • Wicker, L.; Lanier, T. C.; Hamann, D. D.; Akahane, T. Thermal transitions in myosin-ANS fluorescence and gel ri-gidity. J. Food Sci 1986, 51 1540–1543

    Article  CAS  Google Scholar 

  • Wu, M. C.; Lanier, T. C.; Hamann, D. D. Rigidity and viscosity changes of croaker actomyosin during thermal gelation. J. Food Sci 1985, 50 14–19

    Article  CAS  Google Scholar 

  • Xiong, Y. L. Thermally induced interactions and gelation of combined myofibrillar protein from white and red broiler muscles. J. Food Sci 1992, 57 581–585

    Article  CAS  Google Scholar 

  • Xiong, Y. L. Myofibrillar protein from different muscle fiber types - Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nut 1994, 34, 293–320

    Article  CAS  Google Scholar 

  • Xiong, Y. L. Structure-function relationships of muscle proteins. In “Food Proteins and their Applications” (S. Damodaran and A. Paraf, Eds) Marcel Dekker, Inc, New York, USA. 1997, 341–392

    Google Scholar 

  • Xiong, Y. L.; Brekke, C. J. Physicochemical and gelation properties of pre-and postrigor chicken salt-soluble proteins. J. Food Sci 1990, 55 1544–1548

    Article  Google Scholar 

  • Xiong, Y. L.; Brekke, C. J. Protein extractability and thermally induced gelation properties of myofibrils isolated from prerigor and postrigor chicken muscles. J. Food Sci 1991, 56 210–215

    Article  CAS  Google Scholar 

  • Xiong, Y.L.; Blanchard, S.P.; Means, W.J. Properties of broiler myofibril gels containing emulsified lipids. Poultry Sci 1992, 71 1548–1555

    Article  CAS  Google Scholar 

  • Xiong, Y. L.; Brekke, C. J.; Leung, H. K. Thermal denaturation of muscle proteins from different species and mus-cle types as studied by differential scanning calorimetry. Can. Inst. Food Sci. Technol. J 1987, 5,357–362

    Google Scholar 

  • Yamamoto, K.; Samejima, K.; Yasui, T. The structure of myosin filaments and the properties of heat-induced gel in the presence and absence of C-protein. Agric. Biol. Chem 1987, 51 197–203

    Article  CAS  Google Scholar 

  • Yasui, T.; Samejima, K. Recent advance in meat science in Japan - Functionality of muscle proteins in gelation mechanism of structured meat products. JARQ-Japan Agricultural Research Quaterly 1990, 24 I31–140

    Google Scholar 

  • Yasui, T.; Ishioroshi, M.; Samejima, K. Effect of actomyosin on heat-induced gelation of myosin. Agric. Biol. Chem 1982, 46 1049–1059

    Article  CAS  Google Scholar 

  • Young, O. A.; Torley, R J.; Reid, D. H. Thermal scanning rheology of myofibrillar proteins from muscles of defined fibre type. Meat Sci 1992, 32 45–63

    Article  CAS  Google Scholar 

  • Zhang, G. X.; Swank, D. M.; Rome, L. C. Quantitative distribution of muscle fiber types in the scup Stenotomus chrysops. J. Morphol 1996, 229 71–81

    Article  CAS  Google Scholar 

  • Zamora, F.; Debiton, E.; Lepetit, J.; Lebert, A.; Dransfield, E.; Ouali, A. Predicting variability of ageing and toughness in beef M. longissimus lumborum et thoracis. Meat Sci 1996, 43, 321–333

    CAS  Google Scholar 

  • Ziegler, G. R.; Foegeding, E. A. The gelation of proteins. In “Advances in Food and Nutrition Research” Kinsella, J.E. Ed. New York Academic Press. 1990, 34 203–298

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lefèvre, F., Culioli, J., Joandel-Monier, S., Ouali, A. (1999). Muscle Polymorphism and Gelling Properties of Myofibrillar Proteins from Poultry, Mammals, and Fish. In: Xiong, Y.L., Chi-Tang, H., Shahidi, F. (eds) Quality Attributes of Muscle Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4731-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4731-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7144-1

  • Online ISBN: 978-1-4615-4731-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics