Skip to main content

Phosphate-Mediated Water Uptake, Swelling, and Functionality of the Myofibril Architecture

  • Chapter
Quality Attributes of Muscle Foods

Abstract

Phosphates are important functional ingredients in processed muscle foods due to their strong activity in immobilizing water in cooked products. To elucidate the role of the myofibrils in phosphate-induced water absorption in muscle and functionality of the extracted proteins, a series of studies have been conducted. The results indicate that the kinetics of water uptake by meat during marination depend greatly on the type of phosphates, and that the ability to facilitate water entry by phosphates follows the order of: pyrophosphate z tripolyphosphate > hexametaphosphate > orthophosphate. The enhanced hydration power in phosphate-treated meat is attributed to the remarkable swelling of the myofibril architecture and the extraction of actomyosin. The effect of phosphates on the functionality of myofibrillar proteins is influenced by the ionic strength: both pyrophosphate and tripolyphosphate facilitate the gelation of myofibrillar proteins in 0.3-0.4 M NaC1, but decrease gel strength at above 0.5 M NaC1, while hexametaphosphate either promotes or has little effect on protein gelation. The functionality changes are attributed to the phosphate-mediated alterations in protein stability and the aggregation pattern

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbut, S.; Maurer, A. J.; Lindsay, R. C. Effects of reduced sodium chloride and added phosphates on physical and sensory properties of turkey frankfurters. J. Food Sci 1988, 53, 62–66

    Article  CAS  Google Scholar 

  • Bendall, J. R. The swelling effect of polyphosphates on lean meat. J. Sci. Food Agric 1954, 5, 468–475

    Article  CAS  Google Scholar 

  • Egelandsdal, B.; Freitheim, K.; Samejima, K. Dynamic rheological measurements on heat-induced myosin gels:effect of ionic strength, protein concentration and addition of adenosine triphosphate and pyrophosphate. J.Sci. Food Agric 1986, 37, 915–926

    Article  CAS  Google Scholar 

  • Fukazawa, T.; Hashimoto, Y.; Yasui, T. The relationhip between the components of myofibrillar protein and the ef-fect of various phosphates that influence the binding quality of sausage. J. Food Sci 1961, 26, 550–555

    Article  CAS  Google Scholar 

  • Froning, G. W. Effect og polyphosphates on binding properties of chicken meat. Poultry Sci 1965, 44, 1104–1107

    Article  CAS  Google Scholar 

  • Froning, G. W.; Sackett, B. Effect of salt and phosphates during tumbling of turkey breast muscle on meat charac-teristics. Poult. Sci 1985, 64, 1328–1333

    Article  CAS  Google Scholar 

  • Granicher, D.; Portzehl, H. The influence of magnesium and calcium pyrophosphates chelates of free magnesium ions, free calcium ions and free pyrophosphate ions on the dissociation of actomyosin in solution. Biochim. Biophy. Acta 1964, 86, 567–578

    Article  Google Scholar 

  • Hamm, R. Interactions between phosphates and meat proteins. In Symposium: Phosphates in Food Processing; DeMann, J. M., Melnychyn, P., Eds.; AVI Publishing Co.:Westport, CT, 1970; pp. 65–90

    Google Scholar 

  • Hamm, R. Functional properties of the myofibrillar system and their measurements. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press, Inc.:San Diego, CA, 1986; pp. 135–199

    Google Scholar 

  • Hanson, J.; Huxley, H. E. Symp. Soc. Exp. Biol 1955, 9, 228–264

    Google Scholar 

  • Hellendoom, E. W. Water-binding capacity of meat as affected by phosphates. Food Technol 1962, 16, 119–124

    Google Scholar 

  • Kijowski, J. M.; Mast, M. G. Effect of sodium chloride and phosphates on the thermal properties of chicken meat proteins. J. Food Sci 1988, 53, 367–370, 387

    Article  CAS  Google Scholar 

  • Knight, P.; Parsons, N. Action of NaCl and polyphosphates in the meat processing: responses of myofibrils to concentrated salt solutions. Meat Sci 1988, 24, 275–300

    Article  CAS  Google Scholar 

  • Liu, G.; Xiong, Y. L. Gelation of chicken myofibrillar proteins treated with protease inhibitors and phosphates. J. Agric. Food Chem 1997, 45, 3434–3442

    Google Scholar 

  • Lopez-Lacomba, J. L.; Guzman, M.; Cortijo, M.; Mateo, R L.; Aguirre, R.; Harvey, S. C.; Cheung, H. C. Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and sub-fragment 2. Biopolymers 1989, 28, 2143–2159

    Article  CAS  Google Scholar 

  • Monin, G.; Laborde, P. Water-holding capacity of pig muscle proteins: Interaction between the myofibrillar and sarcoplasmic compounds. Sci. Aliments 1985, 5, 341–345

    Google Scholar 

  • Muhlrad A.; Peyser. Y. M.; Ringel, I. Effect of actin, ATP, phosphates, and pH on vanadate-induced photocleavage of myosin subfragment 1. Biochemistry 1991, 30, 958–965

    Article  CAS  Google Scholar 

  • Nauss, K. M.; Kitagawa, S.; Gergely, J. Pyrophosphate binding to and adenosine tripolyphosphatase activity of myosin and its proteolytic fragments. J. Biol. Chem 1969, 244, 755–765

    CAS  Google Scholar 

  • Offer, G.; Knight, R The structural basis of water-holding in meat. In Developments in Meat Science - 4; Lawrie, R., Ed.; Elsevier Appl. Sci.: London, 1988, pp 63–245

    Google Scholar 

  • Offer, G.; Trinick, J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci 1983, 8,245–281

    Article  CAS  Google Scholar 

  • Parsons, N.; Knight, P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agric 1990, 51, 71–90

    Article  CAS  Google Scholar 

  • Patterson, B. C.; Parrish, F. C., Jr.; Stromer, M. H. Effects of salt and pyrophosphate on the physical and chemical properties of beef muscle. J. Food Sci 1988, 53, 1258–1265

    Article  Google Scholar 

  • Robe, G. H.; Xiong, Y. L. Influence of phosphates and muscle fiber type on thermal transitions in porcine salt-soluble protein aggregation. J. Food Sci 1992, 57, 1304–1307, 1310

    Google Scholar 

  • Robe, G. H.; Xiong, Y. L. Dynamic rheological studies on salt-soluble proteins from different porcine muscles. Food Hydrocolloids 1993, 7, 37–146

    Article  Google Scholar 

  • Robe, G. H.; Xiong, Y. L. Kinetic studies of the effects of muscle fiber type and tripolyphosphate on the aggregation of porcine salt-soluble proteins. Meat Sci 1994, 37, 55–65

    Article  CAS  Google Scholar 

  • Swift, C. E.; Ellis, R. The action of phosphates in sausage products. I. Factors affecting the water retention of phosphate treated ground beef. Food Technol 1956, 10, 546–552

    Google Scholar 

  • Torley, P. J.; Young, O. A. Rheological changes during isothermal holding of salted beef homogenates. Meat Sci 1995, 39, 23–34

    Article  CAS  Google Scholar 

  • Trout, G.R.; Schmidt, G.R. Effect of phosphate type and concentration, salt level and method of preparation on binding in restructured beef rolls. J. Food Sci 1984, 49, 687–689

    Article  CAS  Google Scholar 

  • Trout, G. R.; Schmidt, G. R. Effect of phosphates on the functional properties of restructured beef rolls: the role of pH, ionic strength, and phosphate type. J. Food Sci 1986, 51, 1416–1423

    Article  CAS  Google Scholar 

  • Wang, S. F.; Smith, D. M. Heat-induced denaturation and rheological properties of chicken breast myosin and F-actin in the presence and absence of pyrophosphate. J. Agric. Food Chem 1994, 42, 2665–2670

    Article  CAS  Google Scholar 

  • Stabursvik, E.; Martens, H. Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J. Sci. Food Agric 1980, 31, 1034–1042

    Article  CAS  Google Scholar 

  • Wang, S.F.; Smith, D.M. Gelation of chicken breast muscle actomyosin as influenced by weight ratio of actin to myosin. J. Agric. Food Chem 1995, 43, 331–336

    Article  CAS  Google Scholar 

  • Wilson, G. G.; van Laack, R. The effect of sarcoplasmic protein on water-holding capacity of pork. Abstract No. 46C-3 in Book of Abstracts of 1998 Annual IFT Meeting, Atlanta, GA

    Google Scholar 

  • Xiong, Y.L. Myofibrillar protein from different muscle fiber types: implications of biochemical and functional properties in meat processing. CRC Crit. Rev. Food Sci. Nutr 1994, 34, 293–320

    Article  CAS  Google Scholar 

  • Xiong, Y.L. Structure-Functionality relationships of muscle proteins. In Food Proteins and Their Applications in Foods; Damoradan, S., Eds.; Marcel Dekker, Inc.; New York, NY, 1997; pp. 341–392

    Google Scholar 

  • Xiong, Y. L.; Blanchard, S. P. Concentration-dependent thermal aggregation of muscle salt-soluble protein. Lebensm. Wiss. Technol 1992, 25, 544–547

    CAS  Google Scholar 

  • Young, O. A.; Torley, P. J.; Reid, D. H. Thermal scanning rheology of myofibrillar proteins from muscles of defined fiber type. Meat Sci 1992, 32, 45–63

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xiong, Y.L. (1999). Phosphate-Mediated Water Uptake, Swelling, and Functionality of the Myofibril Architecture. In: Xiong, Y.L., Chi-Tang, H., Shahidi, F. (eds) Quality Attributes of Muscle Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4731-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4731-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7144-1

  • Online ISBN: 978-1-4615-4731-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics