Advertisement

Biological Nitrogen Fixation and Future Challenges of Agriculture

The Endophytic Connection
  • Federico SánchezEmail author
  • Luis Cárdenas
  • Carmen Quinto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)

Abstract

Feeding the growing global population, anticipated to be 8 billion by the year 2020, is one of the most important recent challenges of agriculture. The increase in cereal grain yield, to cope with this demand, directly implies a dramatic increase in the use of nitrogen-based fertilizers and agrochemicals. Some of these intensive agricultural practices have progressive detrimental effects on the environment. This review is focused on some novel insights gained into the understanding of associative and symbiotic interactions of plants with nitrogen-fixing organisms that makes Biological Nitrogen Fixation (BNF) a viable answer to this compelling dilemma.

Keywords

Endophytic Bacterium Biological Nitrogen Fixation Azospirillum Brasilense Diazotrophic Bacterium Intensive Agricultural Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsene, F.; Kaminski, P.A.; Eimerich, C. Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the Nif A N-terminal domain. J. Bacteriol. 1996, 178, 4830–4838.PubMedGoogle Scholar
  2. Baldani, J.L; Pot, B.; Kirchhof, G.; Falsen, E.; Baldani, V.L.; Olivares, F.L.; Hoste, B.; Kersters, K.; Hartmann, A.; Gillis, M.; Döbereiner, J. Emended description of Herbaspirillum; inclusion of (Pseudomona) rubrisubalbi-cans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb, nov.; and classification of a group of clinical isolates (EF goup I) as Herbaspirillum species 3. Int. J. Syst. Baeteriol. 1996,46, 802–810.CrossRefGoogle Scholar
  3. Bauer, P.; Crespi, M.D.; Szecsi, J.; Allison, L.A.; Schultze, M.; Ratet, P.; Kondorosi, E.; Kondorosi, E. Alfalfa ENOD12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol. 1994, 105, 585–592.PubMedCrossRefGoogle Scholar
  4. Boddey, R.M.; Giller, K.E.; Cadish, G.; Alves, B.J.R.; Urquiaga, S. Contribution of biological nitrogen fixation to tropical agriculture: actual and potential. In Biological Nitrogen Fixation for the 21st Century. Elmerich, C., Kondorosi, A., Newton, W,E. (eds), 599–603. Kluwer Academic Publishers. The Netherlands. 1998. Google Scholar
  5. Bonfante-Fasolo, P.; Faccio, A.; Perotto, S.; Schubert, A. Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol. Res. 1990, 94, 157–165.CrossRefGoogle Scholar
  6. Brewin, N.J. Development of the legume root nodule. Annu. Rev. Cell Biol. 1991,7, 191–226.PubMedCrossRefGoogle Scholar
  7. Bradbury, S.M.; Peterson, R.L.; Bowley, S.R. Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol. 1991, 119, 115–120.CrossRefGoogle Scholar
  8. Caballero-Mellado, J.; Marttnez-Romero, E. Limited genetic diversity in the endophytic sugarcane bacterium Ace-tobacter diazotrophicus. Appl. Environ. Microbiol. 1994, 60, 1532–1537.PubMedGoogle Scholar
  9. Caballero-Mellado, J.; Fuentes-Ramírez, L.E.; Reis, V.M.; Marttnez-Romero, E. Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl. Environ. Microbiol. 1995,61,3008–3013.PubMedGoogle Scholar
  10. Caballero-Mellado, J.; Martínez-Romero, E.; Estrada de los Santos, P.; and Fuentes-Ramírez, L.E. Maize colonization by Acetobacter diazotrophicus. In Biological Nitrogen Fixation for the 21st Century. Eimerich, C., Kondorosi, A., Newton, W.E. (eds), 381–382. Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998.Google Scholar
  11. Caetano-Anollés, G.; Gresshoff, P. M. Plant genetic control of nodulation. Annu. Rev. Microbiol. 1991, 45, 345–382.PubMedCrossRefGoogle Scholar
  12. Callaham, D.A.; Torrey, J.G. The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can. J. Bot. 1981, 59, 1647–1664.CrossRefGoogle Scholar
  13. Cavalcante, V.A.; Döbereiner, J. A new-acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil. 1988, 108,23–31.CrossRefGoogle Scholar
  14. Chrispeels M.J.; Sadava, D.E. Human population growth: lessons from demography. In Plants, Genes, and Agriculture. 1, 1–24. Jones and Bartlett Publishers International. Boston, MA. 1994. Google Scholar
  15. Costacurta, A.; Vanderleyden, J. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 1995,21,1–18.PubMedCrossRefGoogle Scholar
  16. Crespi, M.D.; Jurkevitch, E.; Poiret, M.; d’Aubenton-Carafa, Y.; Petrovics, G.; Kondorosi, E.; Kondorosi, A. enod40, a gene expressed during nodule organogénesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 1994, 13, 5099–5112.PubMedGoogle Scholar
  17. De Zamaroczy, A..; Paquelin, A.; Peltre, G.; Forchhammer, K.; Eimerich, C. Coexistence of two structurally similar but functionally different P II proteins in Azospirillum brasilense. J. Bacteriol. 1996, 178, 4143–4149.PubMedGoogle Scholar
  18. Döbereiner, J. History and new perpectives of diazotrophs in asociation with non-leguminous plants. Symbiosis 1993, 13,1–13.Google Scholar
  19. Dobritsa, S.V.; Novik, S.N. Feedbaack regulation of nodule formation in Hippophae rhaminoides. Plant Soil. 1992, 144,45–50.CrossRefGoogle Scholar
  20. Due, G.; Trouvelot, A.; Gianinazzi-Pearson, V; Gianinazzi, S. First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 1989, 60, 215–222.CrossRefGoogle Scholar
  21. Ehrhardt, D. W.; Atkinson, E. M.; Long, S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science. 1992, 256, 998–1000.PubMedCrossRefGoogle Scholar
  22. Fang, Y.; Hirsch, A. Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cy-tokinin in transgenic alfalfa. Plant Physiol. 1998, 116, 53–68.PubMedCrossRefGoogle Scholar
  23. Felle, H. H.; Kondorosi, E.; Kondorosi, A.; Schultze, M. Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharide. Plant J. 1995, 7, 6, 939–947.CrossRefGoogle Scholar
  24. Fisher, R.F.; Long, S.R. Rhizobium-plant signal exchange. Nature. 1992, 357, 655–660.PubMedCrossRefGoogle Scholar
  25. Fuentes-Ramírez, L.E.; Jiménez-Salgado, T.; Abarca-Ocampo, LR.; Caballero-Mellado, J. Acetobacter diazotrophicus, an indolacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant Soil. 1993, 154, 145–150.CrossRefGoogle Scholar
  26. Geurts, R.; Heidstra, R.; Hadri, A.E.; Downie, A.J.; Franssen, H.; van Kammen, A; Bisseling. T. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiol. 1997, 115, 351–359.PubMedGoogle Scholar
  27. Hansen, A.P.; Peoples, M.B.; Brown, P.H.; Carroll, B.J.; Gresshoff, P.M. Nitrogen partioning during early development of supernodulating soybean (Glycine max (L.) Merrill) mutants and their wild-type parent. J. Exp. Bot. 1990, 1239–1244.Google Scholar
  28. Hansen, A.P.; Yoneyama, T.; Kouchi, H. Short-term nitrate effects of hydroponically-grown soybean cv. Bragg and its supernodulating mutant: II. Distribution and respiration of recently fixed 13C-labeled photosynthate. J. Exp. Bot. 1992, 43, 9–14.CrossRefGoogle Scholar
  29. Heidstra, R.; Geurts, R.; Franssen, H.D.; Spaink, H.P.; van Kammen, A.; Bisseling, T. Root-hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol. 1994, 105, 787–797.PubMedGoogle Scholar
  30. Hirsch, A.M. Developmental biology of legume nodulation New Phytol. 1992, 122, 211–237.CrossRefGoogle Scholar
  31. Hirsch, A.M.; LaRue, T.A. Is the legume nodule a modified root or stem or an organ sui generis? Crit. Rev. Plant Sci. 1997, 16,4,361–392.Google Scholar
  32. Hirsch, A.M.; Kapulnik, Y. Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhi-zobium-legume symbiosis. Fungal Genet. Biol. 1998, 23, 205–212.PubMedCrossRefGoogle Scholar
  33. Horvath, B.; Heidstra, R.; Lados, M.; Moerman. M,; Spaink. H.P.; Promé, J.-C; Van Kammen, A.; Bisseling, T. Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant. J. 1993, 4, 727–733.PubMedCrossRefGoogle Scholar
  34. Hurek, T.; Reinhold-Hurek, B.; Van Montagu, M.; Kellenberger, E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 1994, 176, 1913–1923.PubMedGoogle Scholar
  35. Hurek, T.; Reinhold-Hurek, B. Identification of grass-associated and toluene degrading diazotrops Appl. Environ. Microbiol. 1995, 61, 2257–2261.PubMedGoogle Scholar
  36. Hurek, T.; Wagner, B.; Reinhold-Hurek, B. Identification of N2-fixing plant-and fungus-associated Azoarcus species by PCR-bases genomic fingerprints. Environ. Microbiol. 1997, 63, 4331–4339.Google Scholar
  37. Jiménez-Salgado, T.; Fuentes-Ramírez, L.E.; Tapia-Hernández, A.; Mascarua-Esparza, M.A.; Martínez-Romero, E.; Caballero-Mellado, J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus and isolation of other nitrogen-fixing acetobacteria. Appl. Environ. Microbiol. 1997, 63, 3676–3683.PubMedGoogle Scholar
  38. Journet, E.P.; Pichon, M.; Dedie, A.; de Billy, F.; Truchet, G.; Barker, D.G. Rhizobium meliloti nod factors elicit cell-specific transcription of the ENOD 12 gene in transgenic alfalfa. Plant J. 1994, 6, 241–249.PubMedCrossRefGoogle Scholar
  39. Katupitiya, S.; Millet, J.; Vesk, M.; Viccars, L.; Zeman, A.; Lidong, Z.; Elmerich, C; Kennedy, LR. A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl. Environ. Microbiol. 1995, 61, 1987–1995.PubMedGoogle Scholar
  40. LaRue, T.; Weeden, N.F. The symbiosis genes of the host. In: Proc. First European Nitrogen Fixation Conference. Kiss, G.B. and Endre, G., Eds. 147-151. Officina Press, Szeged, 1994. Google Scholar
  41. Lerouge, P.; Roche, P.; Faucher, C; Maillet, F.; Truchet, G.; Promé, J.-C; Dénarié, J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosacchaaride signal. Nature. 1990,344,781–784.PubMedCrossRefGoogle Scholar
  42. Makonese, F.T.; Mpepereki, S.; Kasasa, P.; Mafongoya, P. Response of soybean (Glycine max) to co-inoculation with rhizobia and mycorrhizae. In Biological Nitrogen Fixation for the 21st Century. Elmerich, C., Kon-dorosi, A., Newton, W.E. (eds), 633. Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998.Google Scholar
  43. Mylona, P.; Pawlowski, K.; Bisseling, T. Symbiotic Nitrogen Fixation. The Plant Cell. 1995, 7, 869–885PubMedGoogle Scholar
  44. Okon, Y.; Labandera-González, CA. Agronomic applications of Azospirillum. An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 1994, 26, 1551–1601.CrossRefGoogle Scholar
  45. Okon, Y.; Vanderleyden J. Root-associated Azospirillum species can stimulate plants. ASM News. 1997, 63, 7, 366–370.Google Scholar
  46. Pawlowski, K.; Bisseling, T. Rhizobial and actinorhizal symbiosis: what are the shared features?. The Plant Cell. 1996,8, 1899–1913.PubMedGoogle Scholar
  47. Paula, M.A.; Siqueira, O.; Döbereiner, J. Ocorrencia de fungos micorrixicos vesiculoarbusculares e de bacterias diazotroficas na cultura da batata-doce. Rev. Bras. Ci. Solo, Campinas 1993, 17, 349–356.Google Scholar
  48. Penmetsa, R.V.; Cook, D.R. A legume ethylene insensitive mutant hyperinfected by its rhizobial symbiont. Science. 1997, 275, 527–530.PubMedCrossRefGoogle Scholar
  49. Pereg-Gerk, L.; Paquelin, A.; Gounon, P.; Kennedy, LR.; Elmerich, C. A transcriptional regulator of the Lux-R-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol. Plant Microbe Interac. 1998, 11, 3, 177–187.CrossRefGoogle Scholar
  50. Plazinski, J.; Rolfe, R.G. Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Appl. Environ. Microbiol. 1985, 49, 984–989.PubMedGoogle Scholar
  51. Reinhold-Hurek, B.; Hurek, T.; Claeyssens, M., van Montagu, M. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J. Bacteriol. 1993a, 175,21,7056–7065.PubMedGoogle Scholar
  52. Reinhold-Hurek, B.; T. Hurek.; Gillis, M.; Hoste, B.; Vancanneyt, M.; Kesters, K.; De Ley J. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens, sp.nov. and Azoarcus communis sp. nov. Int. J. Syst. Bacteriol. 1993b, 43, 574–584.CrossRefGoogle Scholar
  53. Relic, B.; Talmont, F.; Kopcinska, J.; Golinowski, W.; Promé, J.C; Broughton W.J. Biological activity of Rhizobium sp. NGR 234 Nod-factors on Macroptilium atropurpureum. Mol Plant-Microb Interact. 1993, 6, 764–774.CrossRefGoogle Scholar
  54. Rolfe, B.G.; Mclver, J.M.; Anest, K.; Weinman, J.J.; Djorjevic, M.A.; Yanni, Y.G.; Squartini, A.; Dazzo, F.B. Rhizobium leguminosarum bv trifolii and its interaction with rice plants. In Biological Nitrogen Fixation for the 21st Century. Elmerich, C., Kondorosi, A., Newton, W.E. (eds), 665–666. Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998a. Google Scholar
  55. Rolfe, B.G.; Verma, D.P.S.; Potrykus, I.; Dixon, R.; McCully, M.; Sautter, C; Denarie, J.; Sprent, J.; Reinhold-Hurek, B.; Vanderleyden, J.; Ladha, K.; Dazzo, F.B.; Kennedy, I.; Cocking, E.C Round Table: Agriculture 2020: 8 billion people. In Biological Nitrogen Fixation for the 21st Century. Elmerich, C., Kondorosi, A., Newton, W.E. (eds), 685–692. Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998b. Google Scholar
  56. Sagan, M.; Morandi, D.; Tarenghi, E.; Duc, G. Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after g-ray mutagenesis. Plant Sci. 1995, 111, 63–71.CrossRefGoogle Scholar
  57. Spaink, H.P.; Sheeley, M.; van Brüssel, A.A.N.; Glushka, J.; York, W.S.; Tak, T.; Geiger, O.; Kennedy, E.P.; Reinhold, V.N.; Lugtenberg, B.J.J. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991, 354, 125–130.PubMedCrossRefGoogle Scholar
  58. Spaink, H.P. Regulation of plant morphogenesis by lipo-chitin Oligosaccharides. Crit. Rev. Plant Sci. 1996, 15, 559–582.Google Scholar
  59. Tarrand, J.J.; Krieg, N.R.; Döbereiner, J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 1978, 24, 967–980.PubMedCrossRefGoogle Scholar
  60. Truchet, G.; Roche, P.; Lerouge, P.; Vasse, J.; Camut, S.; de Billy, F.; Promé, J.-C.; Dénarié, J. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogénesis in alfalfa. Nature. 1991, 351, 670–673.CrossRefGoogle Scholar
  61. von Bülow, J.F.W.; Döbereiner, J. Potencial for nitrogen fixation in maize genotypes in Brazil. Proc. Nati. Acad. Sci. USA. 1975, 72, 6, 2389–2393.CrossRefGoogle Scholar
  62. van Brussel, A.A.N.; Bakhuizen, R.; Van Spronsen, P.C.; Spaink, H.P.; Tak, T.; Lugtenberg, B.J.J.; Kijne, J.W. Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 1992, 257, 70–71.PubMedCrossRefGoogle Scholar
  63. Vance, C. Legume symbiotic nitrogen fixation: agronomic aspects. In the Rhizobiaceae. Spaink, H.P. Kondorosi, A., and Hoykaas, P. 509–530 (eds) Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998. CrossRefGoogle Scholar
  64. van de Broek, A.; Bekri, A.M.; Dossselaere, F.; Faure, D.; Lambrecht. M.; Okon, Y.; Costacurta, A.; Prinsen, E.; De Troch P.; Desair, J.; Keijers, V; Vanderleyden, J. Azospirillum-plant root association: genetics of IAA biosynthesis and plant cell wall degradation. In Biological Nitrogen Fixation for the 21st Century. E1-merich, C., Kondorosi, A., Newton, W.E. (eds), 377–378. Kluwer Academic Publishers. Dordrecht, The Netherlands. 1998. Google Scholar
  65. van Rhijn, P.; Fang, Y.; Galili, S.; Shaul, O.; Atzmon, N.; Winiger, S.; Eshead, Y.; Lum, M.; Li, Y.; To, V; Fu-jishige, N. Kapulnik, Y.; Hirsch, A.M. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-mduczd nodules may be conserved. Proc. Nati. Acad. Sei. USA. 1997, 94, 5467–5472.CrossRefGoogle Scholar
  66. Vijn, I.; Martínez-Abarca, F.; Yang, W.C.; das Neves, L.; van Brüssel, Van Kämmen, A.; Bisseling, T. Early nodulin expression during Nod factor induced processes in Viciae sativa. Plant J. 1995, 8, 111–119.PubMedCrossRefGoogle Scholar
  67. Wyss, P.; Mellor, R.B.; Wiemken, A. Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-speeific Polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta. 1990, 182, 22–26.CrossRefGoogle Scholar
  68. Zeman, A.M.; Tchan, Y.T.; Elmerich, C.; Kennedy, LR. Nitrogenase activity in wheat seedlings bearing para-nodules induced by 2,4-dichlorophenoxyacetic acid (2,4-D) and inoculated wir Azospirillum. Res. Microbiol. 1992, 143, 847–855.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Federico Sánchez
    • 1
    Email author
  • Luis Cárdenas
    • 1
  • Carmen Quinto
    • 1
  1. 1.Departamento de Biología Molecular de Plantas Instituto de BiotecnologíaUniversidad Nacional Aut ónoma de MéxicoCuernavaca MorelosMéxico

Personalised recommendations