Combinatorial Chemistry and its Applications in Agriculture and Food

  • Dominic W. S. Wong
  • George H. Robertson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)


Combinatorial chemistry has become a major focus of research activity in the pharmaceutical industry for development new therapeutic compounds. The same techniques could be potentially applied to benefit agricultural and food research. This article reviews the various procedures used in combinatorial chemistry, outlines some of the strengths and limitations of the various methods, and proposes potential areas in agriculture and food that could be benefited by this technology. These areas include developing new antimicrobial agents, antioxidants, and other additives, creating antigen-binding molecules for the detection or removal of food pathogens or toxicants, engineering food proteins and enzymes for specific functions, and modifying biosynthetic pathways for the production of novel natural products.


Combinatorial Library Phage Display Combinatorial Approach Peptide Library Phage Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avalle, B., Vanwetswinkel, S., and Fastrez, J. In vitro selection for catalytic turnover from a library of b-lactamase mutants and penicillin-binding proteins. Bioorg. Medicinal Chem. Lett. 1997, 7, 479–484.CrossRefGoogle Scholar
  2. Blond-Elguindi, S., Cwirla, S. E., Dower, W. J., Lipshutz, R. J., Sprang, S. R., Sambrook, J. F., Gething, M.-J. H. Affinity panning of a library of peptides displayed on bácteriophages reveals the binding specificity of BiR Cell, 1993, 75, 717–728.PubMedCrossRefGoogle Scholar
  3. Blondelle, S. E., Takahashi, E. Dinh, K. T., and Houghten, R. A. The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. J. Appl. Bacteriol. 1995, 78, 39–46.PubMedCrossRefGoogle Scholar
  4. Borchardt, A., and Still, W. C. Synthetic receptor binding elucidated with an encoded combinatorial library. J. Am. Chem. Soc. 1994, 116, 373–374.CrossRefGoogle Scholar
  5. Bray, A. M., Maeji, N. J., Valerio, R. M, Campbell, R. A., and Geysen, H. M. Direct cleavage of peptides from a solid support into aqueous buffer. Application in simultaneous multiple peptide synthesis. J. Org. Chem. 1991, 56, 6659–6666.CrossRefGoogle Scholar
  6. Breaker, R. R., and Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1, 223–229.PubMedCrossRefGoogle Scholar
  7. Brenner, S., and Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA. 1992, 89, 5381–5383.PubMedCrossRefGoogle Scholar
  8. Brocchini, S., James, K., Tangpasuthadol, V., and Kohn, J. A combinatorial approach for polymer design. J. Am. Chem. Soc. 1997, 119,4553–4554.CrossRefGoogle Scholar
  9. Bunin, B. A., and Ellman, J. A. A general and expedient method for the solid-phase synthesis of 1,4-ben-zodiazepine derivatives. J. Am. Chem. Soc. 1992, 114, 10997–10998.CrossRefGoogle Scholar
  10. Bunn, B. a., Plunkett, M. J., and Ellman, J. A. The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. USA 1994, 91, 4708–4712.CrossRefGoogle Scholar
  11. Carell, T., Winter, E. A., Sutherland, A. J., Rebek, J., Jr., Dunayevskiy, Y. M., and Vouros, P. New promise in combinatorial chemistry: synthesis, characterization, and screening of small-molecule libraries in solution. Chem. Biol 1995,2, 171–183.PubMedCrossRefGoogle Scholar
  12. Cargill, J. F., and Maiefski, R. R. Automated combinatorial chemistry on solid phase. Laboratory Robotics and Automation 1996, 8, 139–148.CrossRefGoogle Scholar
  13. Carmi, N., Schultz, L. A., and Breaker, R. R. In vitro selection of self-cleaving DNAs. Chem. Biol. 1996, 3, 1039–1046.PubMedCrossRefGoogle Scholar
  14. Carter, J. M., Vanalbert, S., Lee, J., Lyon, J., and Deal, C. Shedding light on peptide synthesis. Bio/Technology 1992, 10,509–513.PubMedCrossRefGoogle Scholar
  15. Cho, C. Y., Moran, E. J., Cherry, S. R., Stephans, J. C., Fodor, S. P. A., Adams, C. L., Sundaram, A., Jacobs, J. W., and Schultz, P. G. An unnaturnal biopolymer. Science 1993, 261, 1303–1305.PubMedCrossRefGoogle Scholar
  16. Christian, R. B., Zuckermann, R. N., Kerr, J. M., Wang, L., Malcolm, B. A. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage. J. Mol. Biol. 1992, 27, 711–718.CrossRefGoogle Scholar
  17. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. Making antibody fragments using phage display libraries. Nature 1991, 352, 624–628.PubMedCrossRefGoogle Scholar
  18. Cull, M. G., Miller, J. F., and Schatz, P. J. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the 1ac repressor. Proc. Natl. Acad. Sci. USA 1992, 89, 1865–1869.PubMedCrossRefGoogle Scholar
  19. Cwirla, S. E., Peters, E. A., Barrett, R. W, and Dower, W. J. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 1990, 87, 6378–6382.PubMedCrossRefGoogle Scholar
  20. Danielson, E., Golden, J. H., McFarland, E. W., Reaves, C. M., Weinberg, W. H., and Wu, X. D. A combinatorial approach to the discovery and optimization of luminescent materials. Nature 1997, 389, 944–948.CrossRefGoogle Scholar
  21. Dedman, J. R., Kaetzel, M. A., Chan, H. C., Nelson, D. J., and Jamieson, G. A. Jr. Selection of targeted biological modifiers from a bacteriophage library of random peptides. J. Biol. Chem. 1993 268, 23025–23030.PubMedGoogle Scholar
  22. Dooley, C. T., Chung, N. N., Schiller, P. W., and Houghten, R. A. Acetalins: Opioid receptor antagonists determined through the use of synthetic peptide combinatorial libraries. Proc. Natl. Acad. Sci. USA 1993, 90, 10811–10815.PubMedCrossRefGoogle Scholar
  23. Dooley, C. T., Chung, N. N., Wilkes, B. C., Schiller, P. W., Bidlack, J. M., Pasternak, G. W, and Houghten, R. A. An all D-amino acid Opioid peptide with central analgesic activity from a combinatorial library. Science 1994,266,2019–2022.PubMedCrossRefGoogle Scholar
  24. Ellington, A. D. and Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.PubMedCrossRefGoogle Scholar
  25. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. Light-directed, spatially addresable parallel chemical synthesis. Science 1991, 251,767–773.PubMedCrossRefGoogle Scholar
  26. Francisco, J. A., Campbell, R., Iverson, B. L., and Georgiou, G. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Nati. Acad. Sci. USA 1993, 90, 10444–10448.CrossRefGoogle Scholar
  27. Furka, A., Sebestyen, F., Asgedom, M., and Dibo, G. General method for rapid synthesis of multicomponent pep-tide mixtures. Int. J. Peptide Protein Res. 1991, 37,487–493.CrossRefGoogle Scholar
  28. Geysen, H. M., Meloen, R. H., and Barteling, S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 1984, 81, 3998–4002.PubMedCrossRefGoogle Scholar
  29. Gordon, D. W., and Steele, J. Reductive alkylation on a solid phase: synthesis of a piperazinedione combinatorial chemistry. Bioorg. Medicinal Chem. Lett. 1995, 5,47–50.CrossRefGoogle Scholar
  30. Graham, L. D., Haggett, K. D., Jennings, P. A., Le Brocque, D. S., and Whittaker, R. G. Random mutageneis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificies. Biochemistry 1993, 32, 6250–6258.PubMedCrossRefGoogle Scholar
  31. Han, H., Wolfe, M. M., Brenner, S., and Janda, K. D. Liquid-phase combinatorial synthesis. Proc. Natl. Acad. Sci. USA. 1995, 92, 6419–6423.PubMedCrossRefGoogle Scholar
  32. Hebert, N., Davis, P. W., DeBaets, E. L., and Acevedo, O. L. Synthesis of N-substituted hydroxyprolinol phos-phoramidites for the preparation of combinatorial libraries. Tetrahedron Letts. 1994, 35, 9509–9512.CrossRefGoogle Scholar
  33. Hoess, R., Brinkmann, U., Handel, T., and Pastan, I. Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3. Gene, 1993, 128,43–49.PubMedCrossRefGoogle Scholar
  34. Holmes, C. P., Adams, C. L., Kochersperger, L. M., Mortensen, R. B., and Aldwin, L. A. The use of light-directed combinatorial peptide synthesis in epitope mapping. Biopolymers 1995, 37, 199–211.PubMedCrossRefGoogle Scholar
  35. Houghten, R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 1985, 82, 5131–5135.PubMedCrossRefGoogle Scholar
  36. Houghten, R. A., Appel, J. R., Blondelle, S. E., Cuervo, J. H., Dooley, C.T., and Pinilla, C. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. BioTechniques 1992, 13, 412–421.PubMedGoogle Scholar
  37. Houghten, R. A., Pinilla, C., Blondelle, S. E., Appel, J. R., Dooley, C. T., and Cuervo, J. H. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 1991, 354, 84–86.PubMedCrossRefGoogle Scholar
  38. Huang, X., and Boxer, S. G. Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Structural Biology 1994, 1, 226–229.PubMedCrossRefGoogle Scholar
  39. Huse, W. D., Sastry, L., Iverson, S. A., Kang, A. S., Alting-Mees, M., Burton, D. R., Benkovic, S. J., and Lerner, R. A. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989, 246, 1275–1281.PubMedCrossRefGoogle Scholar
  40. Hutchison, C. A. III, Swanstrom, R., and Loeb, D. D. Complete mutagenesis of protein coding domains. Meth. Enzymol. 1991, 202, 356–390.PubMedCrossRefGoogle Scholar
  41. Janda, K. D., Lo, L-C., Lo, C.-H. L., Sim, M.-M., Wang, R., Wong, C.-H., and Lerner, R. A. Chemical selection for catalysis in combinatorial antibody libraries. Science 1977, 275, 945–948.CrossRefGoogle Scholar
  42. Janda, K. D., Lo, C.-H. L., Li, T., Barbas, C. F. III, Wirsching, P., and Lerner, R. A. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 1994, 91, 2532–2536.PubMedCrossRefGoogle Scholar
  43. Jayawickreme, C. K., Graminski, G. F., Quillan, J. M., and Lerner, M. R. Creation and functional screening of a multi-use peptide library. Proc. Natl. Acad. Sci. USA 1994, 91, 1614–1618.PubMedCrossRefGoogle Scholar
  44. Joyce, G. F. Amplification, mutation and selection of catalytic RNA. Gene 1989, 82, 83–87.PubMedCrossRefGoogle Scholar
  45. Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991, 354, 82–84.PubMedCrossRefGoogle Scholar
  46. Lam, K. S., Zhao, S.-G., Wade, S., Krchnak, V., and Lebl, M. Identification of small peptides that interact specifically with a small organic dye. Drug Development Research 1994, 33, 157–160.CrossRefGoogle Scholar
  47. Lebl, M., Krchnak, V., Sepetov, N. F., Seligmann, B., Strop, Felder, S., and Lam, K. S. One-bead-one-structure combinatorial libraries. Biopolymers 1995, 37, 177–198.PubMedCrossRefGoogle Scholar
  48. Lowman, H. B., Bass, S. H., Simpson, N., and Wells, J. A. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 1991, 30, 10832–10838.PubMedCrossRefGoogle Scholar
  49. Marsden, A. F. A., Wilkinson, B., Cortes, J., Dunster, N. J., Staunton, J., and Leadlay, P. F. Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 1998, 279, 199–202.PubMedCrossRefGoogle Scholar
  50. Matthews, D. J., and Well, J. A. Substrate phage: selection of protease substrates by monovalent phage display. Science 1993, 260, 1113–1117.PubMedCrossRefGoogle Scholar
  51. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., and Khosla, C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 1995, 375, 549–554.PubMedCrossRefGoogle Scholar
  52. Neimark, J., and Briand, J. P. Development of a fully automated multichannel peptide synthesizer with integrated TFA cleavage capacity. Pept. Res. 1993, 6, 219–228.PubMedGoogle Scholar
  53. Nokihara, K., Yasuhara, T., Muramoto, K., Ando, E., and Wray, V. 1997. Studies on peptides exhibiting antioxidative activity: Construction of a peptide library and screening. Peptide Chemistry 1996, ed. C. Kitada, Protein Research Foundation, Osaka, Japan.Google Scholar
  54. Ohlmeyer, M. H. J., Swanson, R. N., Dillard, L. W., Reader, J. C., Asouline, G., Kobayashi, R., Wigler, M., and Still, W. C. Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl. Acad. Sci. USA 1993, 90, 10922–10926.PubMedCrossRefGoogle Scholar
  55. Oldenburg, K. R., Longanathan, D., Goldstein, I. J., Schultz, P. C., and Gallop, M. A. 1992. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA 1992, 89, 5393–5397.PubMedCrossRefGoogle Scholar
  56. Parmley, S. F., and Smith, G. P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 1988, 73, 305–318.PubMedCrossRefGoogle Scholar
  57. Patek, M., Drake, B., and Lebl, M. All-cis cyclopentane scaffolding for combinatorial solid phase synthesis of small non-peptide compounds. Tetrahedron Letts. 1994, 35, 9169–9172.CrossRefGoogle Scholar
  58. Pinilla, C., Appel, J. R., and Houghten, R. A. Synthetic peptide combinatorial libraries (SPXLs): identification of the antigenic determinant of b-endorphin reexognized by monoclonal antibody 3E7. Gene 1993, 128, 71–76.PubMedCrossRefGoogle Scholar
  59. Prijambada, I. D., Yomo, T., Tanaka, F., Kawama, T., Yamamoto, K., Hasegawa, A., Shima, Y., Negoro, S., and Urabe, I. Solubility of artifical proteins with random sequences. FEBS Lett. 1996, 382, 21–25.PubMedCrossRefGoogle Scholar
  60. Yomo, T., and Urabe, I. Properties of artificial proteins with random sequences. Enzyme Engineering XIV Conference, Beijing, China, Oct. 12-17, 1997.Google Scholar
  61. Schatz, P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: 13 residue consensus peptide specifies biotinylation in Escherichia coli. Bio/Technology 1993, 11, 1138–1143.PubMedCrossRefGoogle Scholar
  62. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317.PubMedCrossRefGoogle Scholar
  63. Smith, G. P., and Scott, J. K. Libraries of peptides and proteins displayed on filamentous phage. Meth. Enzymol. 1993,217,228–257.PubMedCrossRefGoogle Scholar
  64. Tsang, J., and Joyce, G. F. Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J. Mol. Biol. 1996,262, 31–42.PubMedCrossRefGoogle Scholar
  65. Wells, J. A., and Lowman, H. B. Rapid evolution of peptide and protein binding properties in vitro. Cum Opin. Biotechnol. 1992, 3, 355–362.CrossRefGoogle Scholar
  66. Widersten, M., and Mannervik, B. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants. J. Mol. Biol. 1995, 250, 115–122.PubMedCrossRefGoogle Scholar
  67. Wong, D. W. S. 1995. Food Enzymes: Structure and Mechanism. Chapman and Hall, New York.Google Scholar
  68. Wong, D. W. S., Pavlath, A. E., and Robertson, G. H. 1995. Combinatorial approach in generating RNA and DNA enzymes. Proc. UNJR Protein Panel Meeting, Tsukuba Science City, Japan.Google Scholar
  69. Xiang, X.-D., Sun, X., Briceno, G., Lou, Y, Wang, K. A., Chang, H., Wallace-Freedman, W. G., Chen, S.-W., and Schultz, P. G. A combinatorial approach to materials discovery. Science 1995, 268, 1738–1740.PubMedCrossRefGoogle Scholar
  70. Zuckermann, R. N., Kerr, J. M., Siani, M. A., Banville, S. C., and Santi, D. V. Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis. Proc. Natl. Acad. Sci. USA 1992, 89, 4505–4509.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Dominic W. S. Wong
    • 1
  • George H. Robertson
    • 1
  1. 1.United States Department of AgricultureWestern Regional Research Center, Agricultural Research ServiceAlbanyUSA

Personalised recommendations