Biochemical and Molecular Tools for the Production of Useful Terpene Products from Pepper (Capsicum Annuum)

  • Edmundo Lozoya-Gloria
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)


Among other natural products such as colorants and flavorants, natural fungicides like the pepper phytoalexin capsidiol, and the related biochemical pathways, may be used for practical approaches. Key enzymes such as 3-hydroxy-3-methylglutaryl Coenzyme A: reductase, the farnesyl pyrophosphate synthase and and farnesyl pyrophosphate cyclases are known and some related genes have been isolated. However, specific enzymes for important and final modifications as methylation and others, are still to be studied. Construction of chimeric enzymes allowed already the synthesis of different products and the possibilities of designing new enzymes by gene manipulation to produce unknown and useful chemicals are open.


Capsicum Annuum Chili Pepper Pepper Fruit Farnesyl Pyrophosphate Isopentenyl Pyrophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adiwilaga, K.; Kush, A. Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis). Plant Mol Biol. 1996, 30, 935–946.PubMedCrossRefGoogle Scholar
  2. Alborn, H.T.; Turlings, T.C.J.; Jones, T.H.; Stenhagen, G.; Loughrin, J.H.; Tumlinson, J.H. An elicitor of plant volatiles from beet armyworm oral secretion. Science 1997,276, 945–949.Google Scholar
  3. Aoyagi, K.; Beyou, A.; Moon, K.; Fang, L.; Ulrich, T. Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol. 1993,102, 623–628.PubMedCrossRefGoogle Scholar
  4. Attucci, S.; Aitken, S.M.; Ibrahim, R.K.; Gulick, P.J. A cDNA encoding farnesyl pyrophosphate synthase in white lupin. Plant Physiol. 1995,108, 835–836.PubMedCrossRefGoogle Scholar
  5. Bach, T. J.; Wettstein, A.; Boronat, A.; Ferrer, A.; Enjuto, M.; Gruissemm, W.; Narita, J. O. Properties and molecular cloning of plant HMG-CoA reductase. In Physiology and Biochemistry of Sterols; Patterson, G.W., Nes, W.D., Eds.; American Oil Chemists Society: Champaign, IL, USA, 1991; pp 29–49.Google Scholar
  6. Back, K.; Chappell, J. Cloning and bacterial expression of a sesquiierpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases. J. Biol Chem. 1995,270, 7375–7381.PubMedCrossRefGoogle Scholar
  7. Back, K.; Chappell, J. Identifying functional domains within terpene cyclases using a domain-swapping strategy. Proc. Natl. Acad. Sci. USA 1996, 93, 6841–6845.PubMedCrossRefGoogle Scholar
  8. Back, K.; Yin, S.; Chappell, J. Expression of a plant sesquiterpene cyclase gene in Escherichia coli. Arch. Bio-chem. Biophys. 1994, 315, 527–532CrossRefGoogle Scholar
  9. Banthorpe, D.V.; Charlwood, B.V. The isoprenoids. The terpenoids. In Encyclopaedia of Plant Physiology. Secondary Plant Products; Bell, E.A., Charlwood, B.V., Eds.; Springer-Verlag: Berlin, Heidelberg, Vol. 8, 1980; pp. 185–220.CrossRefGoogle Scholar
  10. Brooker, J.; Russell, D.W. Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum seedlings (peas). Arch. Biochem. Biophys. 1975,167, 730–737.PubMedCrossRefGoogle Scholar
  11. Campos, N.; Boronat, A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 1995, 7, 2163–2174.PubMedGoogle Scholar
  12. Cane, D.E. Biosynthesis of sesquiterpenes. In Biosynthesis of Isoprenoid Compounds; Porter; J.W., Spurgeon, S. L. Eds.; John Wiley and Sons: New York, 1981; pp 283–374.Google Scholar
  13. Cano-Camacho, H. L; ópez-Romero, E.; Lozoya-Gloria, E. Partial purification and characterization of an elicitor stimulated sesquiterpene cyclase from chili pepper (Capsicum annuum L.) fruits. Plant Sci. 1997, 124, 23–31.CrossRefGoogle Scholar
  14. Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Ann. Rev. Plant Physiol. Plant Mol Biol. 1995, 46, 521–547.CrossRefGoogle Scholar
  15. Chappell, J.; Wolf, F.; Proulx, J.; Saunders, C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl Coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?. Plant Physiol. 1995, 109, 1337–1343.PubMedGoogle Scholar
  16. Chávez-Moctezuma, M.P.; Lozoya-Gloria, E. Biosynthesis of the sesquiterpene phytoalexin capsidiol in elicited root cultures of chili pepper (Capsicum annuum).Plant Cell Rep. 1996,15, 360–366.CrossRefGoogle Scholar
  17. Chen, A.; Kroon, P.A.; Poulter, C.D. Isoprenyl diphosphate synthases: protein sequence comparisons, a phyloge-netic tree, and predictions of secondary structure. Protein Sci. 1994, 3, 600–607.PubMedCrossRefGoogle Scholar
  18. Chen, X.Y.; Chen, Y.; Heinstein, P.; Davisson, V.J. Cloning, expression, and characterization of (+)delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch. Biochem. Biophys. 1995, 324, 255–266.PubMedCrossRefGoogle Scholar
  19. Chen, X.Y.; Wang, M.; Chen, Y.; Davisson, V.J.; Heinstein, P. Cloning and heterologous expression of a second (+)-delta-cadinene synthase from Gossypium arboreum. J. Nat. Prod. 1996,59, 944–951.PubMedCrossRefGoogle Scholar
  20. Choi, D.; Ward, B.L.; Bostock, R.M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonie acid. Plant Cell 1992,4, 1333–1344.PubMedGoogle Scholar
  21. Chye, M.L.; Kush, A.; Tan, C.T.; Chua, N.H. Characterization of cDNA and genomic clones encoding 3-hydroxy-S-methy1glutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Mol Biol. 1991,16, 567–577.PubMedCrossRefGoogle Scholar
  22. Correll, C.C.; Ng, L.; Edwards, P.A. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol Chem. 1994,269, 17390–17393.PubMedGoogle Scholar
  23. Croteau, R. Biochemistry of monoterpenes and sesquiterpenes of the essential oils. In Herbs, Spices, and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology; Craker, L.E., Simon, J.E. Eds.; The Haworth Press, Inc.: New York, Vol. 1, 1992; pp 81–133.Google Scholar
  24. Cunillera, N.; Arro, M.; Delourme, D.; Karst, F.; Boronat, A.; Ferrer, A. Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J. Biol. Chem. 1996, 271, 7774–7780.PubMedCrossRefGoogle Scholar
  25. Darvill, A.G.; Albersheim, P. Phytoalexins and their elicitors. Ann. Rev. Plant Physiol. 1984, 35, 243–275.CrossRefGoogle Scholar
  26. de la Cruz, A.; Lopez, L.; Tenllado, F.; Diaz-Ruiz, J.R.; Sanz, A.I.; Vaquero, C; Serra, M.T.; Garcia-Luque, I. The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the to-bamoviruses. Mol Plant Microbe. Interact. 1997,10, 107–113.PubMedCrossRefGoogle Scholar
  27. Dehal, S.S.; Croteau, R. Partial purification and characterization of two sesquiterpene cyclases from sage (Salvia officinalis) which catalyze the respective conversion of farnesyl pyrophosphate to humulene and caryo-phyllene. Arch. Biochem. Biophys. 1988,261, 346–356.PubMedCrossRefGoogle Scholar
  28. Delourme, D.; Lacroute, F.; Karst, F. Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant Mol Biol. 1994, 26, 1867–1873.PubMedCrossRefGoogle Scholar
  29. Denbow, C.J.; Lang, S.; Cramer, C.L. The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl coenzyme A reductases. J. Biol Chem. 1996, 271,9710–9715.PubMedCrossRefGoogle Scholar
  30. Dixon, R.A.; Harrison, M.J. Activation structure and organization of genes involved in microbial defense in plants. Adv. Genet 1990,25, 165–234.CrossRefGoogle Scholar
  31. Enjuto, M.; Balcells, L.; Campos, N.; Caelles, C.; Arro, M.; Boronat, A. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme.Proc. Natl. Acad. Sci USA 1994,91, 927–931.PubMedCrossRefGoogle Scholar
  32. Facchini, P.J.; Chappell, J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc. Natl. Acad. Sci. USA 1992,89, 11088–11092.PubMedCrossRefGoogle Scholar
  33. Ferrer, A.; Aparicio, C; Nogues, N.; Wettstein, A.; Bach, T.J.; Boronat, A. Expression of catalylically active radish 3-hydroxy-3-methylglularyl coenzyme A reductase in Escherichia coli. FEBS Lett. 1990,266, 67–71.PubMedCrossRefGoogle Scholar
  34. Genschik, P.; Criqui, M.C.; Parmentier, Y.; Marbach, J.; Durr, A.; Fleck, J.; Jamet, E. Isolation and characterization of a cDNA encoding a 3-hydroxy-3-melhylgluiaryl coenzyme A reductase from Nicotiana sylvestris. Plant Mol Biol. 1992,20, 337–341.PubMedCrossRefGoogle Scholar
  35. Govindarajan, V.S. Capsicum — Production, technology, chemistry and quality. Part III — Chemistry of the color, aroma and pungency stimuli. CRC Grit. Rev. Food Sci. and Nutr. 1986,24, 245–255.CrossRefGoogle Scholar
  36. Harpster, M.H.; Lee, K.Y.; Dunsmuir, P. Isolation and characterization of a gene encoding endo-beta-1,4-glucanase from pepper (Capsicum annuum L.). Plant Mol Biol. 1997, 33,47–59.PubMedCrossRefGoogle Scholar
  37. Heintze, A.J.; Görlach, C.; Leuschner, P.; Hoppe, P.; Hagelstein, D.; Schulze-Siebert, D.; Schulz, G. Plastidic iso-prenoid synthesis during chloroplast development. Change from metabolic autonomy to a division-of-labor stage. Plant Physiol. 1990,93, 1121–1127.PubMedCrossRefGoogle Scholar
  38. Hoshino, T.; Chida, M.; Yamaura, T.; Yoshizawa, Y.; Mizutani, J. Phytoalexin induction in green pepper cell cultures trated with arachidonic acid. Phytochemistry 1994,36, 1417–1419.CrossRefGoogle Scholar
  39. Hoshino, T.; Yamaura, T.; Imaishi, H.; Chida, M.; Yoshizawa, Y.; Higashi, K.; Ohkawa, H.; Mizutani, J. 5-epi-aris-tolochene 3-hydroxylase from green pepper. Phytochemistiy 1995, 38 609–613.CrossRefGoogle Scholar
  40. Hugueney, P.; Bouvier, F.; Badillo, A.; Quennemet, J.; d’Harlingue, A.; Camara, B. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. Plant Physiol. 1996 111, 619–626.PubMedCrossRefGoogle Scholar
  41. Joost, O.; Bianchini, G.; Bell, A.A.; Benedici, CR.; Magill, C.W. Differential induction of 3-hydroxy-3-methyl-glutaryl CoA reductase in two cotton species following inoculation with Verticillium. Mol Plant Microbe Interact. 1995, 8, 880–885.PubMedCrossRefGoogle Scholar
  42. Kim, Y.J.; Hwang, B.K. Isolation of a basic 34 kiloDalton beta-l,3-glucanase with inhibitory activity agains Phytophthora capsici from pepper stems. Physiol Mol Plant Pathol. 1997,50, 103–115.CrossRefGoogle Scholar
  43. Learned, R.M.; Fink, G.R. 3-Hydroxy-3-methylgiutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc. Natl. Acad. Sci. USA 1989, 86, 2779–2783.PubMedCrossRefGoogle Scholar
  44. Li, J.; Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 1997,90,929–938.PubMedCrossRefGoogle Scholar
  45. Li, J.; Biswas, M.G.; Chao, A.; Russell, D.W.; Chory, J. Conservation of function between mammalian and plant steroid 5 alpha-reductases. Proc. Natl. Acad. Sci. USA 1997, 94, 3554–3559.PubMedCrossRefGoogle Scholar
  46. Maldonado-Mendoza, I.E.; Burnett, R.J.; Nessler, C.L. Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus. Plant Physiol. 1992 100, 1613–1614.PubMedCrossRefGoogle Scholar
  47. Mathis, J.R.; Back, K.; Starks, C.; Noel, J.; Poulter, C.D.; Chappell, J. Pre-steady-state study of recombinant ses-quilerpene cyclases. Biochemistry 1997, 36, 8340–8348.PubMedCrossRefGoogle Scholar
  48. Malsushila, Y.; Kang, W.; Charlwood, B.V. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 1996,172, 207–209.CrossRefGoogle Scholar
  49. McCaskill, D.; Croieau, R. Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha Xpiperita). Planta 1995, 197, 49–56.CrossRefGoogle Scholar
  50. Meyer, B.; Houlne, G.; Pozueta-Romero, J.; Schanlz, M.L.; Schanlz, R. Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding. Plant Physiol. 1996, 112,615–622.PubMedCrossRefGoogle Scholar
  51. Munck, S.L.; Croteau, R. Purification and characterization of the sesquiterpene cyclase patchoulol synthase from Pogostemon cablin. Arch. Biochem. Biophys. 1990, 282, 58–64.PubMedCrossRefGoogle Scholar
  52. Narila, J.O.; Gruissem, W. Tomalo hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell 1989, 1, 181–190.Google Scholar
  53. Nasiri, A.; Holt, A; Bjork, L. Effects of the sesquiterpene capsidiol on isolated guinea-pig ileum and trachea, and on Prostaglandin synthesis in vitro. Planta Med. 1993, 59, 203–206.PubMedCrossRefGoogle Scholar
  54. Newman, M.A.; Daniels, M.J.; Dow, J.M. The activity of lipid A and core components of bacterial lipopolysaceha-rides in the prevention of the hypersensitive response in pepper. Mol Plant Microb. Interact. 1997, 10, 926–928.CrossRefGoogle Scholar
  55. Park, H.S.; Denbow, C.J.; Cramer, C.L. Structure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol. 1992, 20, 327–331.PubMedCrossRefGoogle Scholar
  56. Rhodes, M.J. Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol. Biol. 1994, 24, 1–20.PubMedCrossRefGoogle Scholar
  57. Shipton, C.A.; Parmryd, L; Swiezewska, E.; Andersson, B.; Dallner, G. Isoprenylation of plant proteins in vivo. Isoprenylated proteins are abundant in the mitochondria and nuclei of spinach. J. Biol. Chem. 1995, 270, 566–572.PubMedCrossRefGoogle Scholar
  58. Stachelin, L.A. The plant E.R.: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 1997, 11, 1151–1165.CrossRefGoogle Scholar
  59. Starks, C.M.; Back, K.; Chappell, J.; Noel, J.P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 1997, 277, 1815–1820.PubMedCrossRefGoogle Scholar
  60. Stermer, B.A.; Edwards, L.A.; Edington, B.V.; Dixon, R.A. Analysis of eliciior-inducible Iranscript encoding 3-hy-droxy-3-methylgluiaryl coenzyme A reductase in polato. Physiol Mol Plant Pathol. 1991, 39, 135–145.CrossRefGoogle Scholar
  61. Stoessl, A.; Robinson, J.R.; Rock, G.L.; Ward, E.W.B. Metabolism of capsidiol by sweet pepper tissue: some possible implications for phytoalexin studies. Phytopathology 1977, 67, 64–66.CrossRefGoogle Scholar
  62. Sloessl, A.; Unwin, C.H; Ward, E.W.B. Capsidiol, an aniifungal compound from Capsicum frutescens. Phytopath. Z. 1972, 74, 141–152.CrossRefGoogle Scholar
  63. Turlings, T.C.; Loughrin, J.H.; McCall, P.J.; Rose, U.S.; Lewis, W.J.; Tumlinson, J.H. How caterpillar-damaged plants prolect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. USA 1995, 92, 4169–4174.PubMedCrossRefGoogle Scholar
  64. Vogeli, U.; Chappell, J. Regulation of a sesquiterpene cyclase in cellulase-treated tobacco cell suspension cultures, Plant Physiol. 1990, 94, 1860–1866.PubMedCrossRefGoogle Scholar
  65. Weissenborn, D.L.; Denbow, C.L.; Laine, M.; Lang, S.S.; Yang, Z.; Yu, X.; Cramer, C.L. HMG-CoA reductase and lerpenoid phytoalexins: molecular specialization within a complex pathway. Physiol Plantarum 1995, 93, 393–400.CrossRefGoogle Scholar
  66. Whitehead, I.M.; Threlfall, D.R.; Ewing, D.F. 5-epi-arislolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 1989,28, 775–779.CrossRefGoogle Scholar
  67. Wong, R.J.; McCormack, D.K.; Russell, D.W. Plaslid 3-hydroxy-3-methylglutaryl coenzyme A reductase has distinctive kinetic and regulatory features: properties of the enzyme and positive phytochrome control of activity in pea seedlings. Arch. Biochem. Biophys. 1982, 216, 631–638.PubMedCrossRefGoogle Scholar
  68. Yin, S.; Lei, L.; Newman, J.; Back, K.; Chappell, J. Regulation of sesquiterpene cyclase gene expression. Plant Physiol 1997,115, 437–451.PubMedCrossRefGoogle Scholar
  69. Zook, M.; Johnson, K.; Hohn, T.; Hammerschmidt, R. Structural characterization of 15-hydroxytrichodiene, a ses-quiterpenoid produced by transformed tobacco cell suspension cultures expressing a trichodiene synthase gene from Fusarium sporotrichioides. Phytochemistry 1996, 43, 1235–1237.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Edmundo Lozoya-Gloria
    • 1
  1. 1.Genetic Engineering Department CINVESTAV-IPNIrapuato UnitIrapuato, Gto.México

Personalised recommendations