Monoterpenes in Essential Oils

Biosynthesis and Properties
  • Herminia Loza-Tavera
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)


Monoterpenes are compounds found in the essential oils extracted from many plants, including fruits, vegetables, spices and herbs. These compounds contribute to the flavor and aroma of plant from which they are extracted. Monoterpenes are acyclic, monocyclic, or bicyclic C10 compounds synthesized by monoterpene synthases using geranyl pyrophos-phate (GPP) as substrate. GPP is also the precursor in the synthesis of farnesyl pyrophos-phate (FPP) and geranyl-geranyl pyrophosphate (GGPP), two important compounds in cell metabolism of animals, plants and yeast. Monoterpene cyclases produce cyclic monoterpenes through a multistep mechanism involving a universal intermediate, a terpinyl cation which can be transformed to several compounds. Experimental studies, using animal cancer models, have demonstrated that some monoterpenes possess anticarcinogenic properties, acting at different cellular and molecular levels. From these discoveries it seems clear that monoterpenes could be considered as effective, nontoxic dietary antitumorigenic agents that hold promise as a novel class of anticancer drugs.


Perillyl Alcohol Monoterpene Synthases Geranyl Pyrophosphate Acyclic Monoterpene Perillic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, W. R. and Croteau, R. Prenyl transferases and cyclases In: Methods in Plant Biochemistry. Lea, P. J., Ed.; Academic Press Ltd., London, England 1993, 239–260.Google Scholar
  2. Bursch, W.; Oberhammer, F.; Jirtle, R. L.; Askari, M.; Sedovu, R.; Grasl-Kraupp, B.; Purchio, A. F.; Schulte-Her-mann, R. Transforming growth factor-β1 as signal for induction of cell death by apoptosis. Br. J. Can. 1993,67,531–536CrossRefGoogle Scholar
  3. Casey, P. J. Protein lipidation in cell signaling. Science. 1995, 268, 221–224.PubMedCrossRefGoogle Scholar
  4. Colby, S. M.; Alonso, W. R.; Katahira, E. J.; McGarvey, D. J.; Croteau, R. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J. Biol. Chem. 1993, 268, 23016–23024.PubMedGoogle Scholar
  5. Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids. Chapman & Hall, New York, 1992.Google Scholar
  6. Croteau, R. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 1987, 87, 929–954.CrossRefGoogle Scholar
  7. Croteau, R.; Purkett, P. T. Geranyl pyrophosphate synthase: Characterization of the enzyme and evidence that this chain-length specific prenyltransfarase is associated with monoterpene biosynthesis in sage (Salvia offcinalis). Arch. Biochem. Biophys. 1989, 271, 524–535.PubMedCrossRefGoogle Scholar
  8. Croteau, R.; Alonso, W. R.; Koepp A. E.; Johnson, M. A. Biosynthesis of Monoterpenes. Partial purification, characterization, and mechanism of action of 1,8-cineole synthase. Arch. Biochem. Biophys. 1994, 309, 184–192.PubMedCrossRefGoogle Scholar
  9. Croteau, R.; Gershenzon, J.; Wheeler, C. J.; Satterwhite, D. M. Biosynthesis of Monoterpenes. Stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphene and isocamphene monoterpenes. Arch. Biochem. Biophys. 1990, 277, 374–381.PubMedCrossRefGoogle Scholar
  10. Croteau, R.; Satterwhite, D. M.; Cane, D. E, Chang C. C. Biosynthesis of Monoterpenes. Enantioselectivity in the enzymatic cyclizations of;(+)-and (-)-linalyl pyrophosphate to (+)-and (-)-bornyl pyrophosphate. J. Biol. Chem. 1986, 261, 13438–13445.PubMedGoogle Scholar
  11. Croteau, R.; Satterwhite, D. M.; Cane, D. E.; Chang, C. C. Biosynthesis of Monoterpenes. Enantioselectivity in the enzymatic cyclizations of (+)-linalyl pyrophosphate to (+)-and (-)-pinene and (-)-camphene. J. Biol. Chem. 1988a, 263, 10063–10071.PubMedGoogle Scholar
  12. Croteau, R.; Satterwhite, D. M.; Wheeler, C. J.; Felton, N. M. Biosynthesis of Monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (-)-endo-fenchol. J. Biol. Chem. 1988b, 263, 15449–15453.PubMedGoogle Scholar
  13. Croteau, R.; Satterwhite, D. M.; Wheeler, C. J.; Felton, N. M. Biosynthesis of Monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-α-pinene and (-)-β-pinene. J. Biol. Chem. 1989, 264, 2075–2080.PubMedGoogle Scholar
  14. Croteau, R. B.; Wheeler, C. J.; Cane, D. E.; Ebert, R.; Ha, H.-J. Isotopically sensitive branching in the formation of cyclic monoterpenes: Proof that (-)-α-pinene and (-)-β-pinene are synthesized by the same monotepene cyclase via deprotonation of a common intermediate. Biochemistry 1987, 26, 5383–5389.PubMedCrossRefGoogle Scholar
  15. Crowell, P. L.; Kennan, W. S.; Haag, J. D.; Ahmad, S.; Vedejs, E.; Gould, M. N. Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene. Carcinogenesis 1992,13, 1261–1264.PubMedCrossRefGoogle Scholar
  16. Crowell, P. L.; Siar Ayoubi, A.; Burke, Y. D. Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. Adv. Exp. Med. Biol. 1996, 401, 131–136.PubMedCrossRefGoogle Scholar
  17. De-Oliveira, A. C.; Ribeiro-Pinto, L. F.; Otto, S. S.; Goncalves, A.; Paumgartten, F. J. Induction of liver monooxy-genases by beta-myrcene. Toxicology 1997a, 124, 135–140.PubMedCrossRefGoogle Scholar
  18. De-Oliveira, A. C.; Ribeiro-Pinto, L. F.; Paumgartten, J. R. In vitro inhibition of CYP2B1 monooxygenase by beta-myrcene and other monoterpenoid compounds. Toxicol. Lett. 1997b, 92, 39–44.PubMedCrossRefGoogle Scholar
  19. Dudareva, N.; Cseke, L.; Blanc, V. M.; Pichersky, E. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower}. The Plant Cell. 1996, 8, 1137–1148.PubMedGoogle Scholar
  20. Eisenreich, W.; Menhard, B.; Hylands, P. J.; Zenk, J. H.; Bacher, A. Studies on the biosynthesis of taxol: The tax-ane carbon skeleton is not of mevalonoid origin. Proc. Natl. Acad. Sci. USA. 1996, 93, 6431–6436.PubMedCrossRefGoogle Scholar
  21. Eisenreich, W.; Sagner, S.; Zenk, M. H.; Bacher, A. Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett. 1997, 38, 3889–3892.CrossRefGoogle Scholar
  22. Facchini, P. J.; Chapell, J. Gene family for an elicitor induced sesquiterpene cyclase in tobacco. Proc. Natl Acad. Sci. USA. 1992, 89, 11088–11092.PubMedCrossRefGoogle Scholar
  23. Gambliel, H.; Croteau, R. Pinene Cyclases I and II. Two enzymes form sage (Salvia officinalis) which catalyze stereospecific cyclizations of geranyl pyrophosphate to monoterpene olefins of opposite configuration. J. Biol. Chem. 1984, 259, 740–748.PubMedGoogle Scholar
  24. Gelb, M. H.; Tamanoi, F.; Yokoyama, K.; Ghomashchi, F.; Esson, K.; Gould, M. N. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett. 1995, 91, 169–175.PubMedCrossRefGoogle Scholar
  25. Gould, M. N. Prevention and therapy of mammary cancer by monoterpenes. J. Cell Biochem. 1995, Suppl 22, 139–144.CrossRefGoogle Scholar
  26. Hall, P.; Coates, P. J.; Ansari, B.; Hopwood, D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J. Cell Sci. 1994,107, 3569–3577.PubMedGoogle Scholar
  27. He, L.; Mo, H.; Hadisusilo, S.; Qureshi, A. A.; Elson, C. E. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J. Nutr. 1997,127, 668–674.PubMedGoogle Scholar
  28. Hohl, R. J.; Lewis, K. Differential effects of monoterpenes and lovastatin on ras processing. J. Biol Chem. 1995, 270, 17508–17512.PubMedCrossRefGoogle Scholar
  29. Irving, R. S.; Adams, R. P. Genetic and biosynthetic relationships of monoterpenes. In: Terpenoids: Structure, biogenesis, and distribution. Runeckles, V. C.; Mabry, T. J. Eds. Academic Press. New York and London. 1973,187–214.Google Scholar
  30. Jackson, J. H.; Cochrane, C.G.; Bourne, J. R.; Solski, P. A.; Buss, J. E.; Der, C. J. Farnesol modification of Kir-sten-ras exon 4B protein is essential for transformation. Proc. Natl. Acad. Sci. USA. 1990, 87, 3042–3046.PubMedCrossRefGoogle Scholar
  31. Jirtle, R.L.; Haag, J. D.; Ariazi, E. A.; Gould, M. N. Increased mannose 6-phosphate/insulin-like growth factor II receptor and transforming growth factor β 1 levels during monoterpene-induced regression of mammary tumors. Can. Res. 1993, 53, 3849–3852.Google Scholar
  32. Juven, B. J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631.PubMedCrossRefGoogle Scholar
  33. Karlson, J.; Borg-Karlson, A. K.; Unelius, R.; Shoshan, M. C; Wilking, N.; Ringborg, U.; Linder, S. Inhibition of tumor cell growth by monoterpenes in vitro: Evidence of a Ras-independent mechanism of action. Anti-cancer Drugs. 1996, 7,422–429.PubMedCrossRefGoogle Scholar
  34. Lange, B. M.; Wildung, M. R.; McCaskill, D.; Croteau, R. A family of tansketolases that directs isoprenoid biosynthesis via a mevalonate independent pathway. Proc. Natl. Acad. Sci. 1998, 95, 2100–2104.PubMedCrossRefGoogle Scholar
  35. Lichtenthaler, R.; Schwender, J.; Disch, A.; Rohmer, M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997, 400, 271–274.PubMedCrossRefGoogle Scholar
  36. Lois, L. M.; Campos, N.; Putra, S. R.; Danielsen, K.; Rohmer, M.; Boronat, A. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-de-oxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc. Natl Acad. Sci. USA. 1998, 95, 2105–2110.PubMedCrossRefGoogle Scholar
  37. Luckner, M. Secondary metabolism in microorganisms, plants, and animals. Second Edition. Springer-Verlag, Berlin, Germany 1984, 35–37, 41-42, 199-210.Google Scholar
  38. Mandel, A.; Feldmann, K.; Herrera-Estrella, L.; Rocha-Sosa, M.; Le ón, P. Clal, a novel gene required for chloro-plast development, is highly conserved in evolution. Plant J. 1996, 9, 649–658.PubMedCrossRefGoogle Scholar
  39. Mau, C. J. D.; West, C. A. Cloning of casbene synthase cDNA: Evidence for conserved structural features among terpenoid cyclases in plants. Proc. Natl. Acad. Sci. USA. 1994, 91, 8497–8501.PubMedCrossRefGoogle Scholar
  40. Marion, M. J. P.; Audrin, A.; Miagnial, L.; Brevard, H. Spices and their extracts: Utilization, selection, quality control and new developments. In: Spices, Herbs and Edible Fungi;, Charalambous, G., Ed.; Elsevier. Science B.V. Amsterdam, The Netherlands 1994, 71–95.Google Scholar
  41. McGeady, P.; Croteau, R. Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. Arch. Biochem. Biophys. 1995, 317, 149–155.PubMedCrossRefGoogle Scholar
  42. Meireles, M. A. A.; Nikolov, Z. L. Extraction and fractionation of essential oils with liquid carbon dioxide. In: Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science B.V. Amsterdam, The Netherlands 1994, 1–70.Google Scholar
  43. Mills, J. J.; Chari, R. S.; Boyer, I. J.; Gould, M. N.; Jirtle, R. L. Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res. 1995, 55, 979–983.PubMedGoogle Scholar
  44. Moyler, D. A. Spices-Recent Advances. In: Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science BV. Amsterdam, The Netherlands. 1994, 1–70.Google Scholar
  45. Moyler, D. A.; Browing, R. M.; Stephens, M. A. CO2 extraction of esential oils: Part V, nutmeg and mace oils. In: Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science BV, Amsterdam, The Netherlands 1994, 145–170.Google Scholar
  46. Müller-Riebau, F. J.; Berger, B. M.; Yegen, O.; Cakir, C. Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food Chem. 1997, 45, 4821–4825.CrossRefGoogle Scholar
  47. Nakatani, N. Antioxidative and antimicrobial constituents of herbs and spices. In: Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science B.V. Amsterdam, The Netherlands 1994, 251–271.Google Scholar
  48. Ouattara, B; Simard, R. E.; Holley, R. A.; Piette, G. J.; Begin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162.PubMedCrossRefGoogle Scholar
  49. Patinaik, S.; Subramanyam, V. R.; Bapaji, M.; Kole, C. R. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios. 1997, 89, 39–46.Google Scholar
  50. Pichersky, E.; Lewinsohn, E.; Croteau, R. Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch. Biochem. Biophys. 1995, 316, 803–807.PubMedCrossRefGoogle Scholar
  51. Rajaonarivony, J. I. M.; Gershenzon, J.; Croteau, R. Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Arch. Biochem. Biophys. 1992, 296,49–57.PubMedCrossRefGoogle Scholar
  52. Reddy, B. S.; Wang, C. X.; Samaha, H.; Lubet, R.; Steele, V. E.; Kelloff, G. J.; Rao, C. V. Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res. 1997, 57, 420–425.PubMedGoogle Scholar
  53. Rohmer, M.; Knani, M.; Simonin, P.; Sutter, B.; Sahm, H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 1993. 295, 517–524.Google Scholar
  54. Russin, W. A.; Hoesly, J. D.; Elson, C. E.; Tanner, M. A.; Gould, M. N. Inhibition of rat mammary carcinogenesis by monoterpenoids. Carcinogenesis. 1989,10, 2161–2164.PubMedCrossRefGoogle Scholar
  55. Sharkey, T. D. Isoprene synthesis by plants and animals. Endeavour. 1996, 20,74–78.PubMedCrossRefGoogle Scholar
  56. Shi, W.; Gould, M. N. Induction of differentiation in neuro-2A cells by the monoterpene perillyl alcohol. Cancer Lett. 1995, 95, 1–6.PubMedCrossRefGoogle Scholar
  57. Tantaoui-Elaraki; A.; Beraoud L. Inhibition of growth and aflatoxin production in Aspergillus parasiticus by essential oils of selected plant materials. J. Environ. Pathol. Toxicol Oncol. 1994, 13, 67–72.PubMedGoogle Scholar
  58. Tateo, R.; Ferrillo, A.; Orlandi, A. 1994. Analysis of natural flavourings: Problems and actual methods. In: Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science, B.V. Amsterdam, The Netherlands 1994,97–129.Google Scholar
  59. Wagschal, K. C.; Pyun, H.-J.; Coates, R. M.; Croteau, R. Monoterpene biosynthesis: Isotope effects associated with bicyclic olefin formation catalyzed by pinene synthases from sage (Salvia officinalis). Arch. Biochem. Biophys. 1994, 308, 477–487.PubMedCrossRefGoogle Scholar
  60. Wrana, J. L.; Attisano, L.; Wieser, R.; Ventura, F.; Massagué, J. Mechanism of activation of the TGF-β receptor. Nature (Lond). 1994, 370, 341–347.CrossRefGoogle Scholar
  61. Yuba, A.; Yazaki, K.; Tabata, M.; Honda, G.; Croteau, R. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch. Biochem. Biophys. 1996, 332, 280–287.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Herminia Loza-Tavera
    • 1
  1. 1.Departamento de Bioquímica Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCd. Universitaria, México,México

Personalised recommendations