Advertisement

Biosynthesis of Ricinoleate in Castor Oil

  • Thomas A. McKeon
  • Jiann-Tsyh Lin
  • Allan E. Stafford
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)

Abstract

Castor oil is 90% ricinoleate (12-hydroxyoleate) and has numerous industrial uses. Components of castor bean (Ricinus communis L.) pose serious problems to processors. Other researchers have cloned the gene for the oleoyl hydroxylase, but transgenic plants produce only about 20% hydroxy fatty acid. To improve such transgenic substitutes for castor, we are using HPLC analysis of castor bean microsomal suspensions to follow the hydroxylase reaction and the movement of l4C-ricinoleate through phospholipid into triacylglycerol. Most labeled ricinoleate is rapidly removed from the phospholipid fraction as free fatty acid and incorporated into triacylglycerol, with triricinolein predominating. Elucidation of the basis for high incorporation of ricinoleate and exclusion of oleate from triacylglycerols will identify genes that can be used to engineer high ricinoleate production in transgenic plants.

Keywords

Transgenic Plant Castor Bean Ricinoleic Acid Microsomal Preparation Diacylglycerol Acyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafor, M., Smith, M.A., Jonsson, L., Stobart, K.; Stymne, S. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem. J., 1991, 280, 507–514.PubMedGoogle Scholar
  2. Bornscheuer, U. Toward new fats, oils through biotechnology. INFORM, 1998 485–488.Google Scholar
  3. Broun, P., Hawker, N., Somerville, C.R. Expression of castor and L. fendlerii oléate 12-hydroxylase in transgenic plants: effects on lipid metabolism and inferences on structure-function relationships in fatty acid hydroxy-lases. in: John P. Williams, Mobashsher U. Khan and Nora W. Lern (eds.) Physiology, Biochemistry and Molecular Biology of Plant Lipids. Kluwer Academic Publishers, Dordrecht. 1997 pp. 342–344.Google Scholar
  4. Browse, J., Somerville, C. Glycerolipid Synthesis: Biodensity and Regulation. Ann. Rev. Pl. Physiol. Pl. Mol. Biol. 1991,42,467–501.CrossRefGoogle Scholar
  5. Caupin, H.J. Products from castor oil: past, present, and future, in Frank D.Gunstone and Fred B. Padley (eds.) Lipid Technologies and Applications. Marcle Dekker, Inc. New York 1997 pp. 787–795.Google Scholar
  6. Galliard, T.; Stumpf, P.K. Fat metabolism in plants. XXX. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J. Biol. Chem., 1966, 241, 5806–5812.PubMedGoogle Scholar
  7. Goodrich-Tanrikulu, M., Stafford, A.E., Lin, J.T.; McKeon, T.A. Metabolism of ricinoleate by Neurospora crassa. Appl. Microbiol. and Biotechnol., 1996,46,382–387.CrossRefGoogle Scholar
  8. James, A.T., Hadaway, H.C. and Webb, J.P.W. The biosynthesis of ricinoleic acid. Biochem. J. 1965, 95, 448–452.PubMedGoogle Scholar
  9. Kearns, E.V., Hugly, S., Somerville, C.R. The role of cytochrome b5 in D12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.). Arch. Biochem. Biophys. 1991, 284, 431–436.PubMedCrossRefGoogle Scholar
  10. Knutzon, D.S., Lardizabal, K.D., Nelsen, J.S., Bleibaum, J.L., Davies, H.M. and Metz, J.G. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Pl. Physiol. 1995, 109, 999–1006.CrossRefGoogle Scholar
  11. Lin, J.T., McKeon, T.A.; Stafford, A.E. Gradient reversed-phase high performance liquid chromatography of saturated, unsaturated and oxygenated free fatty acids and their methyl esters. J. Chromotog, 1995, 699, 85–91.CrossRefGoogle Scholar
  12. Lin, J.T., Snyder, L.R.; McKeon, T.A. Prediction of relative retention times of triacylglycerols in non-aqueous reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1998A, 808, 43–49.Google Scholar
  13. Lin, J.T., McKeon, T.A., Goodrich-Tanrikulu, M.; Stafford, A.E., Characterization of oleoyl-12-hydroxylase in castor microsomes using the putative substrate, 1-acy1-2-oleoyl-sn-glycero-3-phosphocholine. Lipids, 1996,31:571–577.PubMedCrossRefGoogle Scholar
  14. Lin, J.T., Woodruff, C.L., Lagouche, O.J., McKeon, TA., Stafford, A.E. Goodrich-Tanrikulu, M., Singleton, J.A.; Haney, CA. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using l-acyl-2-oleoyl-sn-glycero1-3-phosphocholine as the substrate of oleoyl-12-hydroxylase. Lipids, 1998B, 33, 59–69.Google Scholar
  15. Lin, J.T., Woodruff, C.L.; McKeon, T.A. Non-aqueous reversed-phase high-performance liquid chromatography of synthetic triacylglycerols and diacylglycerols. Journal of Chromatography A 782,1997, 41–48.CrossRefGoogle Scholar
  16. Mancha, M.; Stymne, S. Remodelling of triacylglycerols in microsomal preparations from developing castor bean (Ricinus communis L.) endosperm. Planta, 1997, 203, 51–57.Google Scholar
  17. McKeon, T. A., Lin, J.T., Goodrich-Tanrikulu, M.; Stafford, A. E. Ricinoleate biosynthesis in castor microsomes. Industrial Crops and Products, 1997, 6, 383–389.CrossRefGoogle Scholar
  18. McKeon, TA., Lin, J.T., Goodrich-Tanrikulu, M.; Stafford, A.E. Genetic modification of oilseed crops to produce industrial chemicals, in: Fuller, G., McKeon, T.A. and Bills, D. (eds.) Agricultural Materials as Renewable Resources: Non-food and Industrial Applications. 1996, ACS Symposium Series 647, American Chemical Society, Washington, DC pp. 158–178CrossRefGoogle Scholar
  19. Moreau, R.A.; Stumpf, P.K. Recent studies of the enzymic synthesis of ricinoleic acid by developing castor beans. Plant Physiol., 1981, 67, 672–676.PubMedCrossRefGoogle Scholar
  20. Moreau, R.A.; Stumpf, P.K. Solubilization and characterization of an acyl-CoA A: O-lysophospholipid acyltrans-ferase from the microsomes of developing safflower seeds. Plant Physiol., 1982, 69, 1293–1297.PubMedCrossRefGoogle Scholar
  21. Murphy, DJ., Richards, D., Taylor, R., Capdevielle, J., Guillemot, J., Grison, R., Fairbairn, D., Bowra, S. Manipulation of seed oil content to produce industrial crops. Industrial Crops and Products, 1994, 3, 17–27.CrossRefGoogle Scholar
  22. Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell, 1995, 7, 957–970.PubMedGoogle Scholar
  23. Richards, D.E., Taylor, R.D.; Murphy, DJ. Localization and possible substrate requirement of the oleate-12-hy-droxylase of developing Ricinus communis seeds. Plant Physiol. Biochem., 1993, 31: 89–94.Google Scholar
  24. Shanklin, J., Cahoon, E.B., Whittle, E., Lindqvist, Y., Huang, W., Schneider, G.; Schmidt, N. Structure-Function studies on desaturases and related hydroxylases. in John P. Williams, Mobasher U. Khan and Nora (eds.) Physiology, Biochemistry, and Molecular Biology of Plant Lipids, Kluwer Academic Publishers, Dordrecht, 1997 pp. 6–10Google Scholar
  25. Smith, M.A., Jonsson, L., Stymne, S.; Stobart, K. Evidence for cytochrome b5 as an electron donor in ricinoleic biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L). Biochem. J., 1992,287,141–144.PubMedGoogle Scholar
  26. Stahl, U., Banas, A.; Stymne, S. Plant microsomal phospholipid acyl hydrolases have selectivities for uncommon fatty acids. Plant Physiol., 1995, 107, 953–962.Google Scholar
  27. Thorpe, S.C., Kemeny, D.M., Panzani, R.C., McGurl, B., Lord, M. Allergy to castor bean. II. Identification of the major allergens in castor bean seeds. J. Allergy Clin. Immunol. 1988, 82: 67–72.PubMedCrossRefGoogle Scholar
  28. Van de Loo, F.J., Broun, P., Turner, S.; Somerville, C. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc. Natl. Acad. Sci. USA, 1995, 92, 6743–6747.PubMedCrossRefGoogle Scholar
  29. Vogel, G.; Browse, J. Cholinephosphotransferase and diacylglycerol acyltransferase. Plant Physiol., 1996, 110, 923–931.PubMedGoogle Scholar
  30. Yamada, M.; Stumpf, P.K. Enzymic synthesis of ricinoleic acid by extracts of developing Ricinus communis L. seeds. Biochem. Biophys. Res. Comm. 1964, 14, 165–171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Thomas A. McKeon
    • 1
  • Jiann-Tsyh Lin
    • 1
  • Allan E. Stafford
    • 1
  1. 1.Agricultural Research Service, U.S. Dept of AgricultureWestern Regional Research CenterAlbanyUSA

Personalised recommendations