Advertisement

Recent Progress in Agricultural Biotechnology and Opportunities for Contract Research and Development

  • Paul P. Kolodziejczyk
  • Paul Fedec
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)

Abstract

The global market for agriculture products and agriculture-based value-added products is undergoing change as the top players in agriculture and agricultural biotechnology face increased consolidation and ultimately form alliances in development, production and marketing. Transgenic plants for human consumption and industrial applications are entering the marketplace. Novel, genetically engineered, plant-based organisms (GMO) designed for resistance to herbicides, pesticides and environmental stress or for the production of valuable chemicals, Pharmaceuticals and vaccines are available. A growing demand for bioprocessing, test production, scale-up or providing data for registration has created new opportunities for contract research and development (CR&D) firms.

Keywords

Transgenic Plant Fatty Acid Profile Erucic Acid Good Manufacturing Practice Biotechnology Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonner, J.; Galston, A.W. “Highways and Byways in Plant Metabolism”. In Principles of Plant Physiology; p. 298–317; W.H. Freeman & Co., San Francisco, 1952.Google Scholar
  2. Cardon, D.; du Chatenet, G. “Du pays de Cocagne au pays des cow-boys: Le ‘blues’ des plantes à indigo”. In Guide des Teintures naturelles, Perret, D. (ed.), Delachaux et Niestlé, Paris, pp. 133–159,1990. Translation by: M.-A. de Larminat.Google Scholar
  3. Chassinat, E. In Papyrus médical Copte, Mémoires de l’Institut français d’Archéologie orientale du Caire, t. XXXII, p.210, 1921.Google Scholar
  4. Dalsgaard, K. Plant-derived vaccine protects target animals against a viral disease. Nature Biotechnology 1997, 15,248–252.PubMedCrossRefGoogle Scholar
  5. Djerassi C., “Birth of the Pill”. In The Pill, Pygmy Chimps, and Degas’Horse. Basic Books, pp. 49–65,1992.Google Scholar
  6. Downey, R.K. Brassica oilseed breeding-achievements and opportunities. Plant Breed. Abstracts, 1990, 60, 1165–1170.Google Scholar
  7. Duport, C.; Spagnoli, R.; Degryse, E.; Pompon, D. Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nature Biotechnology 1998, 16, 186–189. Genetic Engeeneering News, 1998, 18 (3), 1.PubMedCrossRefGoogle Scholar
  8. Haq, T.A., Mason, H.S., Clements, J.D., Arntzen, C.J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 1995,268, 714–716.PubMedCrossRefGoogle Scholar
  9. Hood, E., E., Kunsnadi, A., Nikolov, Z., Howard, J. A., Molecular farming of industrial proteins from transgenic maize. In: this book.Google Scholar
  10. Kolodziejczyk, P.P.; Fedec P. Processing Flaxseed for Human Nutrition. In “Flax in Human Nutrition” Cunnane, S.C., Thompson, L.U., Eds.; AOCS Press, Champaign, 111., pp. 261–280,1995.Google Scholar
  11. Kutney, J.P.; Aweryn, B.; Choi, L.S.L.; Honda, T.; Kolodziejczyk, P.; Lewis, N.G.; Sato, T.; Sleigh, S.K.; Stuart, K.L.; Worth, B.R.; Kurtz, W.G.W.; Chatson, K.B.; Constabel, F. Studies in plant tissue culture. The synthesis and biosynthesis of indole alkaloids. Tetrahedron 1983, 39, 3781–3795.CrossRefGoogle Scholar
  12. Ma, J.K.-C., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., Lehner, T. Generation and assembly of secretory antibobies in plants. Science 1995, 268: 716–719.PubMedCrossRefGoogle Scholar
  13. Ma, S.; Jevinkar, A.M. Autoantigens produced in plants for oral tolerance therapy of autoimmune diseases. In: this book.Google Scholar
  14. McKown, R.L. Contract Manufacturing Sustains Growth as the Biotechnology Industry Matures. Genetic Engineering News 1997, 17(17), 10.Google Scholar
  15. Moffat, A.S. Exploring transgenic plants as a new vaccine source. Science 1995, 268, 658–660.PubMedCrossRefGoogle Scholar
  16. Murphy, D.J. Manipulation of plant oil composition for the production of valuable chemicals-progress, problems and prospects. — In: this book.Google Scholar
  17. Pen, J. Transgenic seed: a novel enzyme product. Agro-Food-Industry Hi-Tech 1996, January/February, 9-13.Google Scholar
  18. Poirier, Y., Nawrath, C., Somerville, C., Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/Technology 1995, 13, 142–150.PubMedCrossRefGoogle Scholar
  19. Sijmons, P.L. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 1990, 8,217–221.PubMedCrossRefGoogle Scholar
  20. Stefansson, B.R. In “High and Low Erucic Acid Rapeseed Oils”, Kramer, J.K.G., Sauer, F.D., Pigden, W.J. (eds.), Academic Press, New York, pp. 143–160, 1983.CrossRefGoogle Scholar
  21. Theisen, M. Les plantes comme bioréacteurs. Biofutur 1997, 168, 47–51.CrossRefGoogle Scholar
  22. Whitelam, G.C., Cockburn, W. Antibody expression in transgenic plants. Trends Plant Sci. 1996, 8, 268–272.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Paul P. Kolodziejczyk
    • 1
  • Paul Fedec
    • 1
  1. 1.POS Pilot Plant CorporationSaskatoonCanada

Personalised recommendations