Recent Progress in Biotechnology of Mexican Medicinal Plants

  • Ma. Luisa Villarreal
  • Pilar Nicasio
  • Gabriela Rojas
  • Laura Alvarez
  • Rodolfo Quintero
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)


Based on traditional medicinal knowledge, it was possible to identify the plant species Solanum chrysotrichum as the source of a new antimycotic agent designated SC-1. Cell suspension batch cultures from this plant were established in shake flasks, in which the production of SC-1 was optimized, reaching values fifty times higher than those registered in field grown plants. Large-scale cultivation of the active biomass from S, chrysotrichum was established in 10 1 airlift bioreactors, and productivity levels of SC-1 were increased by 60% when using a draw-fill mode in the bioreactors.


High Performance Liquid Chromatography Shake Flask Cell Suspension Culture Inoculum Size Minimal Inhibitory Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, PK.; Jain, DC; Gupta, RK.; Thakur, RS. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochem. 1985, 24, 11,2479–2496.CrossRefGoogle Scholar
  2. Charlwood, BV. & Charlwood, KA. Terpenoid production in plant cell cultures. In: Ecological Chemistry and Biochemistry of Plant Terpenoids; Harborne JB., Tomas, FA, Eds. Clarendon, Oxford, 1991.Google Scholar
  3. Fowler, MW. Substrate utilization by plant cell cultures. J. Chem. Tech. Biotec., 1982,132, 338–346.Google Scholar
  4. Kutsal,T.; Caglar, A. Biotechnological advances in developing countries. In: Recent Advances in Biotechnology. Vardar, F. Sukan, S. Eds. Kluwer Academic. Pub. Dordrecht, 1992 Google Scholar
  5. Levy, G.; Nelson, GL Resonancia magnética Nuclear de Carbono 13. Ediciones Bellaterra S.A. John Wiley and Sons Eds. New York,1972Google Scholar
  6. Lozoya, X. Estado Actual del Conocimiento en Plantas Medicinales Mexicanas. IMEPLAN De. México,1976.Google Scholar
  7. Lozoya, X.; Aguilar, A. Encuesta sobre el uso actual de plantas en 1a Medicina Tradicional Mexicana. Rev. Med. IMSS (México) 1987, 25, 283–291.Google Scholar
  8. Lozoya, X.; Navarro, V.; García, M.; Zurita, M. Solanum chrysotrichum (Schdl) a plant used in Mexico for treatment skin mycosis. J of Ethnopharm. 1991,36, 127–132.CrossRefGoogle Scholar
  9. Meckes, M. Investigación de las Plantas Medicinales en México. Avances y Perspectivas. In: La Investigaci ón Cientifica de 1a Herbolaria Medicinal Mexicana. Secretaria de Salud Eds. México, 1993.Google Scholar
  10. Merillon, JM.; Rideau, M.; Chenieux, JC. Influence of sucrose on levels of ajmalicine serpentine and tryptamine in Catharantus roseus cells in vitro. Plant. Med., 1984, 48, 497–501.CrossRefGoogle Scholar
  11. Murashige,T.; Skoog, E. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1992, 75, 473–497.Google Scholar
  12. Paxton, JD. Assays for antifungal activity. In Methods in Plant Biochemistry Dog PM., Harborne, JD. Eds. Academic Press, Toronto, 1991.Google Scholar
  13. Pérez, MA.; Villarreal, ML.; Navarro, V.: González JL.; Alvarez, L.; Delgado, G. Atriglycosilated spirostanol with antifungal action from Solanum chrysotrichum (sosa). Abstract 9a Jornada de Quimica. Universidad Aut ónoma del Estado de Morelos. 1996,21.Google Scholar
  14. Scragg, A The problems associated with high biomass levels in plant cell suspensions. Plant Cell Tissue & Org. Cult. 1995, 43,163–170.CrossRefGoogle Scholar
  15. Villarreal, ML.; Munoz, J. Studies on the medicinal properties of Solanum chrysotrichum tissue culture. Callus formation and plant induction from axillary buds. Arch, of Med. Res. 1991, 22: 128–133.Google Scholar
  16. Villarreal, ML.; Arias, C; Feria-Velasco, A.; Ramirez, O.; Quintero, R. Cell suspension culture of Solanum chrysotrichum (Schldl.). A plant producing an antifungal spirostanol saponin. Plant Cell Tissue & Org. Cult. 1997(a), 7,39–44CrossRefGoogle Scholar
  17. Villarreal, ML; Arias, C; Vega, J.; Feria-Velasco, A.; Ramírez OT.; Nicasio, P.; Rojas, G.; Quintero, R. Largescale cultivation of Solanum chrysotrichum cells: Production of the antifungal saponin SC-1 in 10 1 airlift bioreactors. Plan. Cell. Rep. 1991(b), 16, 653–656.Google Scholar
  18. Yamakawa, T.; Kato, S.; Ishida, K..; Kodama, T.; Minoda, Y. Production of anthocyanins by Vitis cells in suspension culture. Agric.Biol. Ghem., 1993, 47, 2185–2191.CrossRefGoogle Scholar
  19. Zenk, MH.; El-Shagi, H.; Shulte, U. Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med. 1985 Suppl. 79–101.Google Scholar
  20. Zoila C. La Etnobotánica en el Estudio de 1a Medicina Tradicional. Alternativa para la Salud. CEESTEM. Vol 2, México, 1979.Google Scholar
  21. Zurita,M.; Zolla,C. Enfermedades Dermatol ógicas en la Medicina Tradicional de México. Boletín de la Oficina Sanitaria Panamericana 1986, 101, 339–344.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Ma. Luisa Villarreal
    • 1
    • 4
  • Pilar Nicasio
    • 1
  • Gabriela Rojas
    • 1
  • Laura Alvarez
    • 2
  • Rodolfo Quintero
    • 3
    • 4
  1. 1.Instituto Mexicano del Seguro Social Argentina No1Centro de Investigación Biomédica del SurXochitepecMexico
  2. 2.Facultad de Ciencias Químicas e IndustrialesUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Instituto de BiotecnologíaUNAMMexico
  4. 4.Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations