Production of Food Related Colorants by Culture of Plant Cells

The Case of Betalains
  • A. Jiménez-Aparicio
  • G. Gutiérrez-López
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)


Betalains are vacuole pigments produced solely by Caryophyllales plants and few superior fungi. For many years, betalains have been used as food colorants. The aim of the present chapter is to present relevant aspects related to betalains characteristics and feasibility of their industrial production in bioreactors.


Shear Rate Hairy Root Plant Tissue Culture Plant Cell Culture Shikimic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berlin, J.; Sieg, S.; Strack, D.; Bokern, M.; Harms, H. Production of betalains by suspension cultures of Chenopo-dium rubrum L. Plant Cell, Tiss. Org Cul. 1986, 5(2), 163–174CrossRefGoogle Scholar
  2. Bianco-Colomas, J.; Hugues, M.; Establishment and characterization of a betacyanin producing cell line of Amaranthus tricolor: inductive effects of light and cytokinin. J. Plant Physiol. 1990,136,734–739CrossRefGoogle Scholar
  3. Böhm, H.; Böhm, L.; Rink, E.; Establishment and characterization of a betaxanthin producing cell cultures from Portulaca grandiflora. Plant Cell Tiss. Org. Cult. 1991, 26, 75–82CrossRefGoogle Scholar
  4. Böhm, H.; Rink, E.; Betalains. Cap. 26, p.449–463. En “Cell culture and somatic cell genetics of plants”. Vol.5. Academic Press, N.Y., 1988Google Scholar
  5. Bokern, M.; Strack, D.; Synthesis of hydroxyccinamic acid esters of betacyanins via 1-0-acylglucosydes of hy-droxyccinamic acids by protein preparations from cell suspension cultures of Chenopodium rubrum and petalas of Lampranthus sociorum. Planta 1988,174, 101–105CrossRefGoogle Scholar
  6. Brodelius, P.; Pedersen, H.; Increasing secondary metabolites production in plant cell culture by redirecting transport. TIBTECH. 1993, 11, 30–36CrossRefGoogle Scholar
  7. Curtis, R.; Emery, A.; Plant cell suspension culture rheology. Biotechnol Bioeng. 1993,42, 520–526PubMedCrossRefGoogle Scholar
  8. Dörnenburg, H.; and Knorr, D.; Cellular permeabilization of cultured plant tissue cultures by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnol 1993, 7 (1), 35–48Google Scholar
  9. Dörnenburg, H.; and Knorr, D.; Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb. Technol 1995,17, 674–684CrossRefGoogle Scholar
  10. Dörnenburg, H.; Knorr, D. Challenges and Opportunities of metabolite production from plant cell and tissue culture. Food Technol. 1997, 51(11), 47–54Google Scholar
  11. Dunlop, E.; Namdev. P.; Effect of fluid forces on plant cell suspension. Abstracts of Papers. 3rd International Conference on Bioreactor and Bioprocess Fluid Dynamics; Nienow, A. (Ed.); Mechanical Eng. Pub. Ltd., London, 1993; pp. 447–455Google Scholar
  12. Elliott, C. D.; The pathway of betalain biosynthesis: Effect of cytokinin on enzymatic oxidation and hydroxylation of tyrosine in Amaranthus tricolor seedlings. Physiol. Plant. 1983, 59, 428–437CrossRefGoogle Scholar
  13. Francis, J.; Food colorants today. World Ingred. 1994, Oct./Nov. 8-9, 11Google Scholar
  14. Gamborg, O. L.; Miller, R. A.; Ojima, K.; Nutrient requirements of suspension culture of soybean cells. Exp. Cell Res. 1968, 50, 151–156PubMedCrossRefGoogle Scholar
  15. Girod, P.A.; Zryd, J.; Secondary metabolism in cultured red beet (Beta vulgaris) cells: differential regulation of betaxanthin and betacyanin biosynthesis. Plant Cell Tiss Org. Cult. 1991 25, 1–12CrossRefGoogle Scholar
  16. Goosen, M.; Large-scale insect cell culture. Current Opinion Biotechnol. 1992, 3: 99–104CrossRefGoogle Scholar
  17. Gullett, E.A.; Color and Food. In Encyclopedia of food science and Technology. Vol.1. (Ed) Y.H. Hui; John Wiley and Sons, New York, 1991; pp.452–460Google Scholar
  18. Havkin-Frenkel, D; Dorn, R.; Leustek, T.; Plant tissue culture for production of secondary metabolites. Food Technol 1997, 51(11), 56–59Google Scholar
  19. Hayward, P. M.; Colorantes (Food colorings). Tecnol Aliment. 1992,27(4-5), 34–43Google Scholar
  20. Hempel, J.; Böhm, H.; Betaxanthin pattern of hairy roots from Beta vulgaris var. Lutea and its alteration by feeding of amino acids. Phytochem. 1977, 44(5), 847–852CrossRefGoogle Scholar
  21. Heuer, S.; Strack, D.; Synthesis of betanin from betanidin and UDP-glucose by protein preparation from cell suspension cultures of Dorotheanthusbellidiformis (Burm, f). Planta, 1992,186: 626–628CrossRefGoogle Scholar
  22. Hirano, H.; Komamine, A.; Correlation of betacyanin synthesis with cell division in cell suspension cultures of Phytolacca americana. Physiol Plant, 1994, 90, 239–245CrossRefGoogle Scholar
  23. Hooker, B.; Lee, J.; An, G.; Response of plant tissue culture to high shear environment. Enzyme Microb. Technol 1989, 11, 484–490CrossRefGoogle Scholar
  24. Hooker, B.; Lee, J.; An, G.; Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnol Bioeng. 1990, 35, 296–304PubMedCrossRefGoogle Scholar
  25. Humphrey, A.; Plant cells as chemical factories: control and recovery of valuable products. Advances in Bioproc-ess Engineering; Galindo, E.; Ramirez T. (Eds.); Kluwer Academic Pub., 1994, 103–107Google Scholar
  26. Hunter, C. S.; Kilby, N. J.; Betanin production and release in vitro from suspension cultures of Beta vulgaris. Cap. 49.; Methods in molecular biology. Pollard, W.; Walker, J.M.; Humana Press. 1990, 545–554Google Scholar
  27. Ilker, R.; Invitro pigment production: an alternative to color synthesis. Food Technol. 1987, 41(4), 70–72Google Scholar
  28. Janes, D. A.; Thomas, N.; Callow, J.; Red beet batch culture demonstration of a bubble-free taylor-couette bioreac-tor. Biotechnol. Technol. 1987, 1(4), 257–262CrossRefGoogle Scholar
  29. Jiménez, A. A.; Dávila, O. G.; Villegas, G. T.; Del Villar, M. A.; Obtenci ón de colorantes de interes alimentario por cultivo de células de opuntia microdasys (Lehm) Pfeiff. Rev. Latinoamer. Quim. 1992, 23(1), 5–8Google Scholar
  30. Jiménez, A. A.; Gutiérrez, L. G.; Rodríguez, M. M.; Caracterizacion reológica e hidrodinámica del cultivo de células de betabel (B. vulgaris L.) productoras de betalainas en un biorreactor tipo tanque agitado. Propiedades físicas de los alimentos, Vol. 1; Hübinger, M.; Murr, F. X.; Aguilera, J. M. (Eds).; CYTED-UPV, Vlencia, Espana, 1996; 105–112Google Scholar
  31. Jiménez, A. A.; Rodríguez, M. M.; Gutiérrez, L. G. Unpublished data. 1998 Google Scholar
  32. Joshi, J.; Elias, C.; Patole, M.; Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Biochem. Eng. J. 1996, 62, 121–141Google Scholar
  33. Kato, A.; Kawazoe, S.; Soh, Y.; Viscosity of the broth of tobacco cells in suspension culture. J. Ferment. Technol. 1978, 56(3), 224–228Google Scholar
  34. Khlebnikov, A.; Dubois, B.; Kut, O. M.; Prenosil, J. E.; Growth and productivity of Beta vulgaris cell culture in fluidized bed reactors. Bioprocess Eng. 1995, 14,51–56CrossRefGoogle Scholar
  35. Kieran, P,; O’Donnell, H.; Malone, D.; MacLoughlin, P.; Fluid shear effects on suspension cultures of Morinda citrifolia. Biotechnol. Bioeng: 1995, 45, 415–425PubMedCrossRefGoogle Scholar
  36. Kilby, N. J.; Hunter, C.S.; Repeated harvest of vacuole-located secondary product from in vitro grown plants cells using 1.02mhz ultrasound. Appl. Microbiol. Biotechnol. 1990, 33, 448–451CrossRefGoogle Scholar
  37. Kino-Oka, M.; Mine, K.; Taya, M.; Tone, S.; Bioreactor-based cultured of plant hairy roots for production and recovery of pigments. Biochem. Eng. 2001 1992a, 296–298Google Scholar
  38. Kino-Oka, M.; Hongo, Y.; Taya, M.; Tone, S.; Culture of red beet hairy root in bioreactor and recovery of pigment release by oxygen starvation. J. Chem. Eng. Jpn. 1992b, 25(5), 490–495CrossRefGoogle Scholar
  39. Kino-Oka, M.; Tone, S.; Extracellular production of pigment from red beet hairy roots accompanied by oxygen preservation. J. Chem. Eng. Jpn. 1996, 29(3), 488–493CrossRefGoogle Scholar
  40. Kishima, Y.; Nozaki, K.; Akasi, R.; Adachi, T.; Light inducible pigmentation in Portulaca callus; selection of high betalain producing cell line. Plant Cell Rep. 1991,10,304–307CrossRefGoogle Scholar
  41. Knorr, D.; Berlin, J.; Effects of immobilization and permeabilization procedures on growth of Chenopodium rubrum cells and amaranthin concentration. J. Food Sci. 1987, 52(5), 1397–1400CrossRefGoogle Scholar
  42. Knorr, D.; Beaumont, M.; Caster, C; Dörnemburg, H.; Gross, B.; Pandya, Y.; Romagnoli, L.-G.; Plant tissue culture for the production of naturally derive food ingredients. Food Technol. 1990, 44(6), 71–79Google Scholar
  43. Komamine, A.; Hirano, H.; Kagewata, K.; Suda, J.; Hirose, M.; Roy, R.; Sugiyama, M.; Sakuta, M.; Regulation mechanisms of biosynthesis of betacyanin and anthocyanin in relation to cell division activity in suspension cultures. Proceedings, Primary and Secondary Metabolism of Plants and Plant Cell Cultures, Schrip-sema, J.; Verpoorte, R. (Eds).; Leiden, The Netherlands, 1993, p. 105Google Scholar
  44. Leathers, R.; Davin, C; Zryd, J.; Betalain producing cell cultures of Beta vulgaris L. (Red beet). In Vitro Cell Dev. Biol. 1992, 28, 39–45CrossRefGoogle Scholar
  45. Mabry, T. J.; Taylor, A.; Turner, B. L.; The betacyanins and their distribution. Phytochem. 1963, 2, 61–64CrossRefGoogle Scholar
  46. Mabry, T. J.; Dreiding, A. S.; The betalaines. Recent advances in phytochemistry, Vol.1. Mabry, R.; Alston, E.; Runeckles, V. C. (Eds).; Appleton Century Crofts, New York, 1968; pp. 145–160Google Scholar
  47. Meijer, J.; ten Hoopen, H.; Luyben, K.; Libbenga, R.; Effects of hydrodynamic stress on cultured plant cells: A literature survey. Enzyme Microb. Technol. 1993, 15, 234–238CrossRefGoogle Scholar
  48. Meijer, J.; ten Hoopen, H.; Jan-Gameren, Y.; Luyben, K.; Libbenga, R.; Effects of hydrodynamic stress on the growth of plant cells in batch and continuous culture. Enzyme Microb. Technol. 1994, 16, 467–477CrossRefGoogle Scholar
  49. Metzner, A.; Otto, R.; Agitation of non-Newtonian fluids. A.I.Ch.E.J. 1957, 3(1), 3–9CrossRefGoogle Scholar
  50. Minale, L.; Piatelli, M.; De-Stefano, S.; Nicolaus, R. A.; Pigments of Centrospermae VI. Acylated betacyanins. Phytochem. 1966, 5, 1037–1052CrossRefGoogle Scholar
  51. Mueller, L. A.; Hinz, U.; Zryd, J. P.; The formation of betalamic acid and muscaflavin by recombinant DOPA-di-oxygenase from Amanita. Phytochem. 1997, 44(4),561–569CrossRefGoogle Scholar
  52. Mueller, L. A.; Hinz, U.; Uze, M.; Sautter, C.; Zryd, J. P. Complementation of betalain biosynthesis in P. grandiflora by a fungal DOPA-dioxigenase}. Experientia 1996, 52(2):A20Google Scholar
  53. Murashige, T.; Skoog, F.; A revised medium for rapid growth-promoting activity of various auxins. Plant Physiol. 1962,57,35–41Google Scholar
  54. Piatelli, M.; Minale, L.; Pigments of Centrospermae I. Betacyanins from Phyllocactus hybridus Hort. And Opuntia ficus-indica. Phytochem. 1964, 3, 307–311CrossRefGoogle Scholar
  55. Piatelli, M.; Betalains. Chemistry and biochemistry of plant pigments. Vol. 1. Goodwin, T.W. (Ed); Academic Press, New York, 1976; pp.560–596Google Scholar
  56. Piatelli, M.; The betalains: structure, biosynthesis and chemical taxonomy. The biochemistry of plants: A comprehensive treatise. Vol. 17. Secondary plant products. Conn, E.E. (Ed).; Academic Press, New York, 1981; pp.557–575Google Scholar
  57. Pras, N.; Bioconversion of naturally occurring precursors and related synthetic compounds using plant cell cultures. J. Biotechnol. 1992, 26, 29–62PubMedCrossRefGoogle Scholar
  58. Rink, E.; Böhm, H. Changed betaxanthin pattern in violet flowers of Portulaca grandiflora after the feeding of DOPA. Phytochem. 1985, 24(7), 1475–1477CrossRefGoogle Scholar
  59. Rodríguez, M.; Jiménez, A.; Dávila, G.; Sepúlveda, G.; Effect of carbon source in cell suspension culture of Beta vulgaris. Biotechnol Lett. 1994, 16(8), 853–858Google Scholar
  60. Rodríguez, M M.; Jiménez, A. A.; Sepúlveda, J. G.; Development of an experimental model for the study of the biosynthesis of betalains (natural colorants) from tissue culture of Beta vulgaris. Papers 2nd International Symposium on Natural Colorants. Hereid, R C. (Ed).; S.I.C. Publishing Company, CT, 1996; pp. 409–416Google Scholar
  61. Rodríguez, M.; Galindo. E.; Efecto del estrés hidrodinámico sobre cultivos de células de Beta vulgaris. Abstracts of Papers, Proc. 2nd International Engineering Bioprocesses of Sociedad Mexicana de Biotecnología y Bioingenieria; Mazatlán, México, 1997; p. 155Google Scholar
  62. Rosendal-Jensen, S.; Juhl-Nielsen, B.; Dahlgren, R.; Use of chemistry en plant classification. Rev. Latinoamer.Quim. 1989, Suppl 1, 66–89.Google Scholar
  63. Sakuta, M.; Takagi, T.; Komamine, A.; Growth related accumulation of betacyanin in suspension cultures of Phy-tolacca americana L. J. Plant Physiol. 1986, 125, 337–343CrossRefGoogle Scholar
  64. Schenk, U. R.; Hildebrandt, C. A.; Medium and techniques for induction and growth of monocotyledoneus and di-cotyledoneus plan cell cultures. Can. J. Bot. 1972, 50, 199–204CrossRefGoogle Scholar
  65. Scragg, A.; Allan, E.; Leckie, F.; Effect of shear on the viability of plant cell suspension. Enzyme Microb. Technol. 1988, 10, 361–367CrossRefGoogle Scholar
  66. Scragg, A.; Large-scale plant cell culture: methods, applications and products. Current Opinion Biotechnol. 1992, 3, 105–109CrossRefGoogle Scholar
  67. Schwitzguébel, J. P.; Zryd, J. P.; Leathers, R.; From plant cells to biotechnology. Swiss Biotech. 1991, 9(1), 17–24Google Scholar
  68. Schwitzguébel, J. P; Biosynthesis of betalains by cultivation of red beetroot cells in bioreactors. Abstract at WEB site, 1997Google Scholar
  69. Sobkowska, E.; Czapski, L.; Kaczmarek, R.; Red table beet pigment as food colorant. Int. Food Ing. 1991, 3, 24–28Google Scholar
  70. Spears, K.; Developments in food colorings: the natural alternatives. TIBTECH 1988, 6 (8), 1973–1980Google Scholar
  71. Stafford, A.; The manufacture of food ingredients using plant cell and tissue cultures. Trends Food Sci. Technol. 1991, 5(2), 116–122CrossRefGoogle Scholar
  72. Steghis, W.; Strack, D.; Betalains. The alkaloids. Vol. 39; Brossi, A. (Ed.); Academic Press, Orlando, FL, 1991; pp. 1–62Google Scholar
  73. Strack, D.; Steglich, W.; Wray, V; Betalains. Methods in plant biochemistry. Vol. 8; Academic Press, Orlando, FL, 1993; pp.421–450Google Scholar
  74. Takeda, T.; Seki, M.; Furusaki, S.; Hydrodynamic damage of cultured cells of Carthamus tinctorius in a stirred tank reactor. J. Chem. Eng. 1994, 27(4), 466–471CrossRefGoogle Scholar
  75. Tan, W.; Dai, G.; Chen, Y.; Quantitative investigations of cell-bubble interactions using a foam fractionation technique. Cytotechnology 1994, 15 (1-3), 321–328Google Scholar
  76. Tanaka, H.; Technological problems in cultivation of plant cells at high density. Biotechnol. Bioeng. 1988, 23, 1203–1218CrossRefGoogle Scholar
  77. Tanaka, H.; Semba, H.; Jitsufuchi, T.; Harada, H.; The effect of physical stress on plant cells in suspension cultures. Biotechnol Lett. 1988, 10(7), 485–490CrossRefGoogle Scholar
  78. Taticek R.; Moo-Young, M.; Legge, L.; The scale-up of plant cell culture: engineering considerations. Plant Cell Tiss.Cult. 1994, 24, 139–158CrossRefGoogle Scholar
  79. Thomas, C.; Problems of shear in biotechnology. Chemical engineering problems in biotechnology. Winkler, M. (Ed.); Elsevier, Sci. Pub. England, 1990; pp. 25–93Google Scholar
  80. Tramper, J.; Gooijer, D.; Vlak, J.; Scale-up considerations and bioreactor development for animal cell cultivation. Insect cell culture engineering. Goosen, M.; Daugulis, A.; Faulkner, P. (Eds.); Marcel Dekker, Inc., New York, 1993; pp. 139–177Google Scholar
  81. Trejo, T. G.; Rodríguez, M. M.; Jiménez, A. A.; De Jesus, S. A.; Martinez, B. B.; Sepúlveda, J. G.; Salcedo, M. G.; Estudios para 1a producci ón de betalainas en cultivos de Beta vulgaris: Efecto de la fuente de carbono y nitrógeno. Abstracts of Papers, Proc. 2nd International Engineering Bioprocesses of Sociedad Mexicana de Biotecnología y Bioingenieria; Mazatlán, México, 1997; p.206Google Scholar
  82. Trezzini, G. F.; Zryd, J. P.; Portulaca grandiflora: A model system for the study of the biochemistry and genetics of betalain synthesis. Acta Hort. 1990, 280, 581–585Google Scholar
  83. Trezzini, G. F.; Zryd, J. P.; Two betalains from Portulaca grandiflora. Phytochem. 1991a, 30(6), 1897–1899CrossRefGoogle Scholar
  84. Trezzini, G. F.; Zryd, J. P.; Characterization of some natural and semi-synthetic betaxantins. Phytochem, 1991b, 30(6), 1901–1903Google Scholar
  85. Wagner, F.; Vogelman, H.; Cultivation of plant tissue cultures in bioreactors and formation of secondary metabolites. Plant tissue culture and its biotechnological application, Barz, W.; Reinhard, R.; Zenk, H. (Eds.), Springer-Verlag, Berlin, 1977; pp. 245–255CrossRefGoogle Scholar
  86. Weller, A. T.; Lasure, L. L.; Betalains in beet root tissue culture. J. Food Sci. 1982, 47,162–163CrossRefGoogle Scholar
  87. von-Elbe, J. H.; The betalaines. Current aspects of food colorants, Chap. 3, Furia, E.T. (Ed).; CRC Press Inc., Boca Raton, FL, 1977; pp. 29–39Google Scholar
  88. Zhong, J.; Seki, T.; Kinoshita, S.; Yoshida, T.; Rheological characteristics of cell suspension and cell culture of Periella frutescens. Biotechnol. Bioeng. 1990, 40,1256–1262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • A. Jiménez-Aparicio
    • 1
  • G. Gutiérrez-López
    • 2
  1. 1.CEPROBI-IPNYautepecMéxico
  2. 2.ENCB-IPN Carpio and Plan de Ayala s/n MéxicoDGIAMéxico

Personalised recommendations