Advertisement

Improvements in Human Health Through Production of Human Milk Proteins in Transgenic Food Plants

  • Takeshi Arakawa
  • Daniel K. X. Chong
  • Charles W. Slattery
  • William H. R. Langridge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)

Abstract

Plants are particularly suitable bioreactors for the production of proteins, as their eu-karyotic nature frequently directs the appropriate post-translational modifications of recombinant proteins to retain native biological activity. The autotrophic growth of plants makes this in vivo biosynthesis system economically competitive for supplementation or replacement of conventional production systems in the future. For the production of biologically active proteins, food plants provide the advantage of direct delivery via consumption of transformed plant tissues. Here we describe the production of recombinant human milk proteins in food plants for improvements in human nutrition and health, with emphasis on enhanced nutrition for non-breast fed infants as well as children and adults. Nutritional improvements in edible plants generated through advancements in recombinant DNA technology are rapidly repositioning the world for enjoyment of a more healthful diet for humans in all age groups.

Keywords

Human Milk Whey Protein Milk Protein Infant Formula Total Soluble Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, T.; Chong, D. K. X.; Merritt, J. L.; Langridge, W. H. R. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res. 1997, 6, 403–413.PubMedCrossRefGoogle Scholar
  2. Arakawa, T.; Chong, D. K, X.; Langridge, W. H. R. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotechnol. 1998,16, 292–297.PubMedCrossRefGoogle Scholar
  3. Arnold, R. R.; Cole, M. F.; McGhee, J. R. A bactericidal effect for human lactoferrin. Science 1977,197, 263–265.PubMedCrossRefGoogle Scholar
  4. Blakeborough, P.; Salter, D. N.; Gurr, M. I. Zinc binding in cow’s milk and human milk. Biochem. J. 1983, 209, 505–512.PubMedGoogle Scholar
  5. Brantl, V. Novel Opioid peptide derived from human β-casein. Eur. J. Pharmacol. 1984, 106, 213–214.PubMedCrossRefGoogle Scholar
  6. Chong, D. K. X.; Roberts, W.; Arakawa, T.; Ules, K.; Bagi, G.; Slattery, C. W.; Langridge, W. H. R. Expression of the human milk protein, β-casein in transgenic potato plants. Transgenic Res. 1997, 6, 289–296.PubMedCrossRefGoogle Scholar
  7. van Cott, K. E.; Lubon, H.; Russel, C. G.; Butler, S. P.; Gwazdauskas, F.C.; Knight, J.; Drohan, W. N.; Velander, W. H. Phenotypic and genotypic stability of multiple lines of transgenic pigs expressing recombinant human protein C. Transgenic Res. 1997, 6, 203–212.PubMedCrossRefGoogle Scholar
  8. Daneman, D.; Fishman, L.; Clarson,C; Martin, J. M. Dietary triggers of insulin-dependent diabetes in the BB rat. Diabetes Res. 1987, 5, 93–97.PubMedGoogle Scholar
  9. Dickson, I. R.; Perkins, D. J. Studies on the interactions between purified bovine caseins and alkaline-earth-metal ions. Biochem. J. 1971, 124, 235–240.PubMedGoogle Scholar
  10. Ebert, K. M.; Selgrath, J. P.; DiTullio, P.; Denman, J.; Smith, T. E.; Memon, M. A.; Schindler, J. E.; Monastersky, G. M.; Vitale, J. A.; Gordon, K. Transgenic production of a variant of human tissue-type Plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology (NY) 1991, 9,835–838.CrossRefGoogle Scholar
  11. Escher, A.; O’Kane, D. J.; Lee, J.; Szalay, A. A. Bacterial luciferase alpha-beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc. Natl. Acad. Sci. USA 1989, 86, 6528–6532.PubMedCrossRefGoogle Scholar
  12. Gimeno, S. G.; de Souza, J. M. IDDM and milk consumption. A case-control study in Sao Paulo, Brazil. Diabetes Care 1997, 20, 1256–1260.PubMedCrossRefGoogle Scholar
  13. Green, M. R.; Pastewka, J. V. High levels of lactoferrin expression in lactating mammary glands. Endocrinology 1978,103, 1510–1513.CrossRefGoogle Scholar
  14. Greenberg, R.; Groves, M. L.; Dower, H. J. Human β-casein. Amino acid sequence and identification of phospho-rylation sites. J. Biol. Chem. 1984, 259, 5132–5138.PubMedGoogle Scholar
  15. Gutierrez, A.; Meade, H. M.; Ditullio, P.; Pollock, D.; Harvey, M.; Jimenez-Flores, R.; Anderson, G. B.; Murray, J. D.; Medrano, J. F. Expression of a bovine kappa-CN cDNA in the mammary gland of transgenic mice utilizing a genomic milk protein gene as an expression cassette. Transgenic Res. 1996, 5, 271–279.PubMedCrossRefGoogle Scholar
  16. Hansson, L.; Bergstrom, S.; Hernell, O.; Lonnerdal, B.; Nilsson, A. K.; Stromquist, M. Expression of human milk β-casein in Escherichia colt comparison of recombinant protein with native isoforms. Protein Expr. Purif. 1993, 4,373–381.PubMedCrossRefGoogle Scholar
  17. Haq, T. A.; Mason, H. S.; Clements, J. D.; Arntzen, C. J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 1995, 268, 714–716.PubMedCrossRefGoogle Scholar
  18. Hitchin, E.; Stevenson, E. M.; Clark, A. J.; McClenaghan, M.; Leaver, J. Bovine beta-casein expressed in transgenic mouse milk is phosphorylated and incorporated into micelles. Protein Expr. Purif. 1996, 7, 247–252PubMedCrossRefGoogle Scholar
  19. Host, A. Importance of the first meal on the development of cow’s milk allergy and intolerance. Allergy Proc. 1991, 12, Ill–Ill.CrossRefGoogle Scholar
  20. Host, A.; Jacobsen, H. P.; Halken, S.; Holmenlund, D. The natural history of cow’s milk protein allergy/intolerance. Eur. J. Clin. Nutr. 1995, 49 Suppl 1, S13–S18.PubMedGoogle Scholar
  21. Horsch, R. B.; Fry, J. E.; Hoffmann, N. L.; Eichholtz, D.; Rogers, S. G.; Fraléy, R. T. A simple and general method for transferring genes into plants. Science 1985, 227, 1229–1231.CrossRefGoogle Scholar
  22. Johansson, C.; Samuelsson, U.; Ludvigsson, J. A high weight gain early in life is associated with an increased risk of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1994, 37, 91–94.PubMedCrossRefGoogle Scholar
  23. Karjalainen, J.; Martin, J. M.; Knip, M.; Ilonen, J.; Robinson, B. H.; Savilahti, E.; Åkerblom, H. K.; Dosch, H. — M. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. N. Engl. J. Med. 1992, 327, 302–307.PubMedCrossRefGoogle Scholar
  24. Kerr, D. E.; Liang, F.; Bondioli, K. R.; Zhao, H.; Kreibich, G.; Wall, R. J.; Sun, T. — T. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat. Biotechnol. 1998, 16, 75–79.PubMedCrossRefGoogle Scholar
  25. Kohmura, M.; Nio, N.; Kubo, K.; Minoshima, Y.; Munrkana, E.; Ariyoshi, Y. Inhibition of angiotensin-converting enzymes by synthetic peptides of human β casein. Agrie. Biol. Chem. 1989, 53, 2107–2114.CrossRefGoogle Scholar
  26. Kunz, C.; Lonnerdal, B. Casein and casein subunits in preterai milk, colostrum and mature milk. J. Pediatr. Gas-troenterol Nutr. 1990, 10, 456–461.Google Scholar
  27. Lahov, E.; Regelson, W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, is-racidin peptides. Food Chem. Toxicol. 1996, 34, 131–145.PubMedCrossRefGoogle Scholar
  28. Lawrence, R. A. Breastfeeding. A guide for the medical profession. 3rd ed.; The C. V. Mosby Co., 1989.Google Scholar
  29. Lee, K. F.; DeMayo, F. J.; Atiee, S. H.; Rosen, J. M. Tissue-specific expression of the rat beta-casein gene in trans-genic mice. Nucleic Acids Res. 1988,16, 1027–1041.PubMedCrossRefGoogle Scholar
  30. Lonnerdal, B. Methods for studying trace-element binding ligands in human milk. In Human Lactation. Milk Components and Methodologies; Jensen, R. G.; Neville, M. C., Eds.; Plenum Press: New York, 1985.Google Scholar
  31. Lu, L.; Hangoc, G.; Oliff, A.; Chen, L. T.; Shen, R. — N.; Broxmeyer, H. E. Antivirus activity of cloned lactoferrin protein. Cancer Res. 1987, 47,4184–4188.PubMedGoogle Scholar
  32. Ma, J. K.-C; Hiatt, A.; Hein, M.; Vine, N. D.; Wang, F.; Stabila, P.; van Dolleweerd, C; Mostov, K.; Lehner, T. Generation and assembly of secretory antibodies in plants. Science 1995, 268, 716–719.PubMedCrossRefGoogle Scholar
  33. Ma, S.-W.; Zhao, D.-L.; Yin, Z.-Q.; Mukherjee, R.; Singh, B.; Qin, H. — Y.; Stiller, C. R.; Jevnikar, A. M. Transgenic plants expressing autoantigens fed to mice to induce oral immune tolerance. Nat. Med. 1997, 3, 793–796.PubMedCrossRefGoogle Scholar
  34. Mason, P. L.; Heremans, J. F.; Schonne, E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J.Exp. Med. 1969, 130, 643.CrossRefGoogle Scholar
  35. Mason, H. S.; Ball, J. M.; Shi, J. — J.; Jiang, X.; Estes, M. K.; Arntzen, C. J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 1996, 93, 5335–5340.PubMedCrossRefGoogle Scholar
  36. Mason, H. S.; Lam, D. M.-K.; Arntzen, C. J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 1992, 89, 11745–11749.PubMedCrossRefGoogle Scholar
  37. Migliori-Samour, D.; Jolies, P. Casein, a prohormone with an immunomodulating role for the newborn. Experien-tial 1988, 44, 188–193.CrossRefGoogle Scholar
  38. Miller, M. J. S.; Witherly, S. A.; Clark, D. A. Casein: a milk protein with diverse biologic consequences. Proc. Soc. Exp. Biol. Med. 1990, 195, 143–159.PubMedGoogle Scholar
  39. Mitra, A.; Zhang, Z. Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol. 1994, 106, 977–981.PubMedCrossRefGoogle Scholar
  40. Mykkanen, H. W.; Wasserman, R. H. Enhanced absorption of calcium by β-casein phosphopeptides in rachitic and normal chicks. J. Nutr. 1980, 10, 2141–2148.Google Scholar
  41. Naito, H.; Suzuki, H. Further evidence for the formation in vivo of phospholipids in the intestinal lumen from dietary β-casein. Agrie. Biol. Chem. 1974, 38, 1543–1545.CrossRefGoogle Scholar
  42. Packard, V. S. Macronutrients and Energy. In Human Milk and Infant Formula; Stwart, G. F.; Schweigen, B. S.; Hawthorn, J., Eds.; Academic Press: New York, 1982.Google Scholar
  43. Pennington, J. A. T. Vegetables, Vegetable Products & Vegetable Salads. In Bowes and Church’s food values of proteins commonly used. 16th edition. J.B. Lippincott Company, Philadelphia, Pennsylvania, 1993.Google Scholar
  44. Perkin, J. E. In Food allergies and adverse reactions; Aspen Publishers, Inc., 1990.Google Scholar
  45. Platenburg, G. J.; Kootwijk, E. P.; Kooiman, P. M.; Woloshuk, S. L.; Nuijens, J. H.; Krimpenfort, P. J.; Pieper, F. R.; de Boer, H. A.; Strijker, R. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 1994, 3, 99–108.PubMedCrossRefGoogle Scholar
  46. Savilahti, E.; Akerblom, H. K.; Tainio, V.-M.; Koskimies, S. Children newly diagnosed insulin dependent diabetes mellitus have increased levels of cow’s milk antibodies. Diabetes Res. 1988, 7, 137–140.PubMedGoogle Scholar
  47. Spychalla, J. P.; Scheffler, B. E.; Sowoknos, J. R.; Bevan, M. W. Cloning, antisense RNA inhibition, and the coordinated expression of UDP-glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J. Plant Physiol. 1994, 144, 444–453.CrossRefGoogle Scholar
  48. Takase, K.; Hagiwara, K. Expression of human alpha-lactalbumin in transgenic tobacco. J. Biochem. 1998, 123, 440–444.PubMedCrossRefGoogle Scholar
  49. Vilotte, J. L.; Soulier, S.; Stinnakre, M. G.; Massoud, M.; Mercier, J. C. Efficient tissue-specific expression of bovine alpha-lactalbumin in transgenic mice. Eur. J. Biochem. 1989, 186, 43–48.PubMedCrossRefGoogle Scholar
  50. Virtanen, S. M.; Rasanen, L.; Aro, A.; Lindstrom, J.; Sippola, H.; Lounamaa, R.; Toivanen, L.; Tuomilehto, J.; Akerblom H. K. Infant feeding in Finnish children less than 7 yr of age with newly diagnosed IDDM. Childhood diabetes in Finland study group. Diabetes Care 1991, 14, 415–417.PubMedCrossRefGoogle Scholar
  51. Virtanen, S. M.; Saukkonen, T.; Savilahti, E.; Ylonen, K.; Rasanen, L.; Aro, A.; Knip, M.; Tuomilehto, J.; Akerblom, H. K. Diet, cow’s milk protein antibodies and the risk of IDDM in Finnish children. Childhood diabetes in Finland study group. Diabetologia 1994, 37, 381–387.PubMedCrossRefGoogle Scholar
  52. Wall, R. J.; Pursel, V. G.; Shamay, A.; McKnight, R. A.; Pittius, C. W.; Hennighausen, L. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci. USA 1991, 88, 1696–1700.PubMedCrossRefGoogle Scholar
  53. Wilson, N. W.; Hamburger, R. N. Allergy to cow’s milk in the first year of life and its prevention. Ann. Allergy 1988, 61, 323–327.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Takeshi Arakawa
    • 3
    • 4
  • Daniel K. X. Chong
    • 3
  • Charles W. Slattery
    • 1
    • 5
  • William H. R. Langridge
    • 3
    • 1
    • 4
    • 2
  1. 1.Department of BiochemistryLoma Linda UniversityLoma LindaUSA
  2. 2.Center for Molecular Biology and Gene Therapy, School of MedicineLoma Linda UniversityLoma LindaUSA
  3. 3.Center for Molecular Biology and Gene TherapyLoma Linda UniversityLoma LindaUSA
  4. 4.Department of Microbiology and Molecular GeneticsLoma Linda UniversityLoma LindaUSA
  5. 5.Department of PediatricsLoma Linda UniversityLoma LindaUSA

Personalised recommendations