Advertisement

Molecular Farming of Industrial Proteins from Transgenic Maize

  • Elizabeth E. Hood
  • Ann Kusnadi
  • Zivko Nikolov
  • John A. Howard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 464)

Abstract

Recombinant egg white avidin and bacterial B-glucuronidase (GUS) from transgenic maize have been commercially produced. High levels of expression were obtained in seed by employing the ubiquitin promoter from maize. The recombinant proteins had activities that were indistinguishable from their native counterparts. We have illustrated that downstream activities in the production of these recombinant proteins, such as stabilizing the germplasm and processing for purification, were accomplished without any major obstacles. Avidin (A8706) and GUS (G2035) are currently marketed by Sigma Chemical Co.

Keywords

Transgenic Plant Maize Seed Transgenic Maize Ubiquitin Promoter Molecular Farming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W., Ryan, CA. Functional analysis of the 3’ control region of the potato wound-inducible Proteinase inhibitor II gene. Plant Cell 1989, 1, 115–122.PubMedGoogle Scholar
  2. Austin, S., Bingham, E.T., Koegel, R.G., Mathews, D.E., Shahan, M.N., Straub, R.J., Burgess, R.R. An overview of a feasibility study for the production of industrial enzymes in trangenic alfalfa. Ann. NY Acad. Sci. 1994, 727,234–244.CrossRefGoogle Scholar
  3. Benfey, P.N., Chua, N-H. Regulated genes in transgenic plants. Science 1989, 244, 174–181.PubMedCrossRefGoogle Scholar
  4. Brot, F.E., Bell, C.E., Sly, W.S. Purification and properties of β-glucuronidase from human placenta. Biochemistry 1978, 17,385–391.PubMedCrossRefGoogle Scholar
  5. Christensen, A.M., Sharrock, R.A., Quail, P.H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol. 1992,18, 675–689.PubMedCrossRefGoogle Scholar
  6. Clements, J.M., O’Connel, L.I., Tsunasawa, S., Sherman, F. Expression and activity of a gene encoding rat cyto-chrome c in the yeast Saccharomyces cerevisiae. Gene 1989, 83, 1–14.PubMedCrossRefGoogle Scholar
  7. Cornejo, M., Luth, D., Blankenship, K., Anderson, O., Blechl, A. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 1993, 23, 567–581.PubMedCrossRefGoogle Scholar
  8. DeLange, R.J., Huang, T.S. Egg White Avidin III. Sequence of the 75-residue middle cyanogen bromide peptide. Complete amino acid sequence of the protein subunit. J. Biol.Chem. 1971, 246, 698–709.PubMedGoogle Scholar
  9. Fisk, H.J., Dandekar, A.M. The introduction and expression of transgenes in plants. Scientia Hort. 1993, 55, 5–36.CrossRefGoogle Scholar
  10. Gehrmann, M.C., Opper, M., Sedlacek, H.H., Bosslet, K., Czech, J. Biochemical properties of recombinant human β-glucuronidase synthesized in baby hamster kidney cells. Biochem J. 1994, 301, 821–828.PubMedGoogle Scholar
  11. Gope, M.L., Keinanen, R.A., Kristo, P.A., Conneely, O.M., Beattie, W.G., Zarucki-Schulz, T., O’Malley, B.W., Kulomaa, M.S.: Molecular cloning of the chicken avidin cDNA. Nuc. Acids Res. 1987, 15, 3595–3606.CrossRefGoogle Scholar
  12. Heney, G., Orr, G.A.. The purification of avidin and its derivatives on 2-iminobiotin-6-aminohexyl-sepharose 4B. Anal Biochem. 1981, 114, 92–96.PubMedCrossRefGoogle Scholar
  13. Hiller, Y., Gershoni, J.M., Bayer, E.A., Wilchek, M. Biotin binding to avidin. Biochem J. 1987, 248, 167–171.PubMedGoogle Scholar
  14. Hirel, P-H., Schmitter, J-M., Dessen, P., Fayat, G., Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimat amino acid. Proc Natl. AcadSci USA, 1989, 86, 8247–8251.CrossRefGoogle Scholar
  15. Ho, K-J. A large scale purification of β-glucuronidase from human liver by immunoaffinity chromatography. Biotech and Appl Biochem 1991, 14, 296–305.Google Scholar
  16. Hood, E.E., Witcher, D.R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., Flynn, P., Register, J., Marshall, L., Bond, D., Kulisek, E., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R.J., Hernán, R., Kappel, W.K., Ritland, D., Li, C.P., Howard, LA. Commercial production of avidin from transgenic maize: Characterization of transformant, production, processing, extraction and purification. Mol. Breeding 1997, 3:291–306.CrossRefGoogle Scholar
  17. Holzman, D. Agracetus grows monoclonals in soybeans and corn plants. Genet. Eng. News 1994, 14(16), 1, 34.Google Scholar
  18. Jefferson, R.A., Burgess, S.M., Hirsch, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci 1986, 83, 8447–8451.PubMedCrossRefGoogle Scholar
  19. Jefferson, R.A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molec Biol Rep 5, 1987, 387–405.CrossRefGoogle Scholar
  20. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6, 3901–3907.PubMedGoogle Scholar
  21. Jhingan, A.K. A novel technology for DNA isolation. Methods Mol Cell Biol, 1992, 3, 15–22.Google Scholar
  22. Keinanen, R.A., Laukkanen, M-L., Kulomaa, M.S. Molecular cloning of three structurally related genes for chicken avidin. J. Steroid Biochem. 1988, 30, 17–21.PubMedCrossRefGoogle Scholar
  23. Keinanen, RA., Wallen, M.J., Kristo, P.A., Laukkanen, M.O., Toimela, T.A., Helenius, M.A., Kulomaa, M.S. Molecular cloning and nucleotide sequence of chicken avidin-related genes 1-5. Eur. J. Biochem. 1994, 220, 615–621.PubMedCrossRefGoogle Scholar
  24. Krebbers, E., Bosch, D., Vandekerckhove, J. Prospects and progress in the production of foreign proteins and pep-tides in plants. In Plant Protein Engineering Shewry, P.R., Gutteridge, S., Eds.; Cambridge University Press, pp.315–325 Cambridge, MA 1993. Google Scholar
  25. Kusnadi, A.R., Hood, E.E., Witcher, D.R., Howard, J.A., Nikolov, Z.L. Production and purification of two recombinant proteins from transgenic corn. Biotechnology Progress. 1998,14, 147–155.CrossRefGoogle Scholar
  26. Matsudaira, P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride mem-brnes. J. Biol. Chem. 1987, 262, 10035–10038.PubMedGoogle Scholar
  27. Nagy, F., Odell, J.T., Morelli, G., Chua, N.H. Properties of expression of the 35S promoter from CaMV in transgenic tobacco plants. In Biotechnology in plant science: relevance to agriculture in the eighties. Zaitlin, M., Day, P., Hollaender, A. Eds.; Academic Press, p. 227–235, Orlando, FL 1985.Google Scholar
  28. Pen, J., Verwoerd, T.C., van Paridon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, K., van der Klis, J.D., Versteegh, H.A.J., van Ooyen, A.J.J., Hoekema, A. Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technol, 1993A, 11, 811–814.Google Scholar
  29. Pen, J., Sijmons, P.C., van Ooijen, A.J.J., Hoekema, A. Protein production in transgenic crops: Analysis of plant molecular farming. In Industrial Crops Production. Elsevier, Amsterdam, pp. 241–250 1993B. Google Scholar
  30. Rogers, J.C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J. Biol. Chem. 1985,250,3731–3738.Google Scholar
  31. Rethinaswamy, A., Yang, C-H., Srivastava, P.N. Purification and characterization of β-glucuronidase from bull seminal plasma and its role in fertilization. Mol Reprod and Dev. 1994, 38, 404–409.CrossRefGoogle Scholar
  32. Schmidt, J., Herfurth, E., Subramanian, A.R. Purification and characterization of seven chloroplast ribosomal proteins: Evidence that organeile ribosomal protein genes are functional and that NH2-terminal processing oc-curs via multiple pathways in chloroplasts. Plant Mol Biol. 1992, 20, 459–465.PubMedCrossRefGoogle Scholar
  33. Termignoni, C., Freitas, J.O., Guimaraes, J.A. Methionyl aminopeptidase from rat liver: distribution of the membrane-bound subcellular enzyme. Mol Cell Biochem., 1991,102, 101–113.PubMedCrossRefGoogle Scholar
  34. White J., Chang, S-Y.P., Bibb, M.J., Bibb, J.M. A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nuc. Acids Res. 1990,18, 1062.CrossRefGoogle Scholar
  35. Whitelem, G.C., Cockburn, B., Gandecha, A.R., Owen, M.R.L. Heterologous protein production in transgenic plants. Biotechnol. Genetic Eng. Rev. 1993, 11, 1–29.Google Scholar
  36. Wilson, C.M. Proteins of the kernel. In Corn: chemistry and technology. Watson, S.A., Ramstad, P.E. Eds., American Association of Cereal Chemists, Inc. St. Paul, MN 1987, pp. 273–305.Google Scholar
  37. Witcher, D.R., Hood, E.E., Peterson, D., Bailey, M., Bond, D., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehigh, R., Kappel, W., Register, J., and Howard, J.A. Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Molecular Breeding 1998, 4, 301–312.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Elizabeth E. Hood
    • 3
    • 4
  • Ann Kusnadi
    • 1
  • Zivko Nikolov
    • 1
    • 2
  • John A. Howard
    • 3
  1. 1.Department of Food Science and Human NutritionIowa State UniversityAmesUSA
  2. 2.Department of Agricultural and Biosystems EngineeringIowa State UniversityAmesUSA
  3. 3.Iowa State UniversityAmesUSA
  4. 4.ProdiGene, Inc.College StationUSA

Personalised recommendations