Skip to main content

Quantum Phase Transitions in 2d Quantum Liquids

  • Chapter
Correlations, Coherence, and Order

Abstract

Continuous quantum phase transitions have attracted much attention in this decade both from experimentalists as well as from theorists. (For reviews see Refs1-4) These transitions, taking place at the absolute zero of temperature, are dominated by quantum and not by thermal fluctuations as is the case in classical finite-temperature phase transitions. Whereas time plays no role in a classical phase transition, being an equilibrium phenomenon, it becomes important in quantum phase transitions. The dynamics is characterized by an additional critical exponent, the so-called dynamic exponent, which measures the asymmetry between the time and space dimensions. The natural language to describe these transitions is quantum field theory. In particular, the functional-integral approach, which can also be employed to describe classical phase transitions, turns out to be highly convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. I. Uzunov. “Introduction to the Theory of Critical Phenomena,” World Scientific, Singapore (1993).

    Google Scholar 

  2. T. Liu, and A. M. GoldmanMod. Phys. Lett. B 8:277 (1994).

    Article  ADS  Google Scholar 

  3. S. Sachdev, in: “Proceedings of the 19th IUPAP International Conference on Statistical Physics,” Xiamen, China (1995) edited by B. -L. Hao, World Scientific, Singapore (1995), p. 289 [n-print cond-mat/9508080 (1995)].

    Google Scholar 

  4. S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69:315 (1997).

    Article  ADS  Google Scholar 

  5. C. M. Fraser, Z. Phys. C 28:101 (1985); I. J. R. Aitchison and C. M. Fraser, Phys. Rev. D 31:2605 (1985).

    Article  ADS  Google Scholar 

  6. E. P. Gross, Nuovo Cimento 20:454 (1961); L. P. Pitaevskii, Soy. Phys. JETP 13:451 (1961).

    Article  MATH  Google Scholar 

  7. N. N. Bogoliubov, J. Phys. USSR 11:23 (1947).

    Google Scholar 

  8. S. T. Beliacv, Soy. Phys. JETP 7:289 (1958).

    Google Scholar 

  9. N. M. Hugenholtz, and D. Pines, Phys. Rev. 116:489 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. J. Bernstein, and S. Dodelson, Phys. Rev. Lett. 66:683 (1991); K. M. Benson, J. Bernstein, and S. Dodelson, Phys. Rev. D 44:2480 (1991).

    Google Scholar 

  11. J. Gavoret and P. Nozières, Ann. Phys. (N.Y.), 28:349 (1964).

    Article  ADS  Google Scholar 

  12. A. M. J. Schakel, Int. J. Mod. Flips. B 8:2021 (1994).

    Article  ADS  Google Scholar 

  13. A. M. J. Schakel, Mod. Phys. Lett. B 4:927 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. M. J. Schakel, Int J. Mod. Phys. B 10:999 (1996).

    Google Scholar 

  15. P. W. Anderson, Rev. Mod. Phys. 38:298 (1966).

    Article  ADS  Google Scholar 

  16. H. Leutwyler, Phys. Rev. D 49:3033 (1994).

    Article  ADS  Google Scholar 

  17. A. M. J. Schakel, Nucl. Phys. B [FS] 453:705 (1995).

    Article  ADS  Google Scholar 

  18. M. Greiter, F. Wilczek, and E. Witten, Mod. Phys. Lett. B 3:903 (1989).

    Article  ADS  Google Scholar 

  19. J. F. Donoghue, Phys. Rev. D 50:3874 (1994); e-print gr-qc/9512024 (1995).

    Article  ADS  Google Scholar 

  20. T. Y. Cao, and S. S. Schweber, Synthese 97:(1993); in: “Renormalization,” edited by L. M. Brown, Springer-Verlag, Berlin (1993).

    Google Scholar 

  21. P. B. Weichman, Phys. Rev. B 38:8739 (1988).

    Article  ADS  Google Scholar 

  22. A. L. Fetter, and J. D. Walecka. “Quantum Theory of Many-Particle Systems,” McGraw-Hill, New York (1971).

    Google Scholar 

  23. E. H. Lieb, and W. Liniger, Phys. Rev. 130:1605 (1963); E. H. Lieb, Phys. Rev. 130:1616 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. D. I. UzunovPhys. Lett. A 87:11 (1981).

    Article  ADS  Google Scholar 

  25. U. C. Täuber, and D. R. Nelson, Phys. Rep. 289:157 (1997).

    Article  ADS  Google Scholar 

  26. O. Penrose, and L. Onsager, Phys. Rev. 104:576 (1956).

    Article  ADS  MATH  Google Scholar 

  27. P. Nozières and D. Pines. “The Theory of Quantum Liquids,” Addison-Wesley, New York (1990), Vol. II.

    Google Scholar 

  28. L. S. Brown. “Quantum Field Theory,” Cambridge University Press, Cambridge (1992).

    Google Scholar 

  29. S. K. Ma. “Modern Theory of Critical Phenomena,” Benjamin, London (1976).

    Google Scholar 

  30. A. M. J. Schakel, Phys. Lett. A 224:287 (1997).

    Article  ADS  Google Scholar 

  31. S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B 49:12938 (1994).

    Article  ADS  Google Scholar 

  32. K. Huang, and H.-F. Meng, Phys. Rev. Lett. 69:644 (1992).

    Article  ADS  Google Scholar 

  33. A. L. Fetter, Phys. Rev. 138:429 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Kleinert. “Gauge Fields in Condensed Matter,” World Scientific, Singapore (1989), Vol. I.

    Google Scholar 

  35. H. Kleinert, Int. J. Mod. Phys. A 7:4693 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. H. Kleinert, in: “Formation and Interactions of Topological Defects,” Proceedings NATO ASI, Cambridge (1994), edited by A. C. Davis, and R. Brandenburger Plenum, New York (1995).

    Google Scholar 

  37. H. Lamb. “Hydrodynamics,” Dover, New York (1945), p. 230.

    Google Scholar 

  38. W. Yourgrau, and S. Mandelstam. “Variational Principles in Dynamics and Quantum Theory,” Pitman, London (1968).

    Google Scholar 

  39. M. V. Berry, Proc. Roy. Soc. A 392:45 (1984).

    Article  ADS  MATH  Google Scholar 

  40. F. D. M. Haldane, and Y. -S. Wu, Phys. Rev. Lett. 55:2887 (1985).

    Article  ADS  Google Scholar 

  41. F. Lund, Physica A 159:245 (1991).

    Google Scholar 

  42. E. J. Yarmchuk, and R. E. Packard, J. Low Temp. Phys. 46:479 (1982).

    Article  ADS  Google Scholar 

  43. V. L. Berezinskii, Soy. Phys. JETP 34:610 (1972).

    ADS  Google Scholar 

  44. J. M. Kosterlitz, and D. J. Thouless, J. Phys. C 6:1181 (1973).

    Article  ADS  Google Scholar 

  45. D. R. Nelson, and J. M. Kosterlitz, Phys. Rev. Lett. 39:1201 (1977).

    Article  ADS  Google Scholar 

  46. S. Schenker, in: “Recent Advances in Field Theory and Statistical Mechanics,” proceedings of Les Houches summerschool, Session XXXIX, 1982, edited by J. B. Zuber, and R. Stora, Elsevier, Amsterdam (1984).

    Google Scholar 

  47. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108:1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. S. Weinberg, Prog. Theor. Phys. Suppl. 86:43 (1986).

    Article  ADS  Google Scholar 

  49. H. KleinertFortschr. Phys. 26:565 (1978).

    Article  MathSciNet  Google Scholar 

  50. A. J. Leggett, in “Modern Trends in the Theory of Condensed Matter,” edited by A. Pekalski, and J. Przystawa, Springer-Verlag, Berlin (1980), p. 13.

    Book  Google Scholar 

  51. R. D. Mattuck. “A Guide to Feynman Diagrams in the Many-Body Problem,” McGraw-Hill, New York (1976).

    Google Scholar 

  52. R. Haussmann, Z. Plays. B 91:291 (1993).

    Google Scholar 

  53. M. Drechsler, and W. Zwerger, Ann. Phys. (Germany), 1:15 (1992).

    Article  ADS  Google Scholar 

  54. C. A. R. Si de Melo, M. Randeria, and J. R. Engelbrecht, Phys. Rev. Lett. 71:3202 (1993).

    Article  ADS  Google Scholar 

  55. M. Marini, F. Pistolesi, and G. C. Strinati, e-print tond-mat/9703160 (1997).

    Google Scholar 

  56. U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. 30:6419 (1989).

    Google Scholar 

  57. M. Randeria, J. -M. Duan, and L. -Y. Shieh, Phys. Rev. B 41:327 (1990).

    Article  ADS  Google Scholar 

  58. F. A. Schaposnik, Plays. Rev. D 18:1183 (1978).

    Article  ADS  Google Scholar 

  59. J. Pearl, in: “Low Temperature Physics-LT9,” edited by J. G. Danut, D. O. Edwards, F. J. Milford, and M. Yagub, Plenum, New York (1965).

    Google Scholar 

  60. P. G. de Gennes. “Superconductivity of Metals and Alloys,” Addison-Wesley, New York (1966).

    Google Scholar 

  61. M. R. Beasley, J. E. Mooij, and T. P. Orlando, Phys. Rev. Lett. 42:1165 (1979).

    Article  ADS  Google Scholar 

  62. M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, Phys. Rev. B 44:6883 (1991); S. M. Girvin, M. Wallin, M.-C. Cha, M. P. A. Fisher, and A. P. Young, Prog. Theor. Phys. Suppl. 107:135 (1992).

    Article  ADS  Google Scholar 

  63. A. F. Hebard, and M. A. Paalanen, Phys. Rev. Lett. 65:927 (1990).

    Article  ADS  Google Scholar 

  64. R. B. Laughlin, Phys. Rev. Lett. 50:1395 (1983).

    Article  ADS  Google Scholar 

  65. V. L. Ginzburg, and L. D. Landau, Zh. Eksp. Teor. Fiz. 20:1064 (1950); reprinted in: L. D. Landau. “Collected Papers,” Pergamon, London (1965), p. 546.

    Google Scholar 

  66. L. P. Gorkov, Soy. Phys. JETP 9:1364 (1959).

    MathSciNet  Google Scholar 

  67. S. M. Girvin, in: “The Quantum Hall Effect,” edited by R. E. Prange and S. M. Girvin, Springer-Verlag, Berlin (1986), Ch. 10; S. M. Girvin, and A. H. MacDonald, Phys. Rev. Lett. 58:1252 (1987).

    Google Scholar 

  68. S.-C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62:82 (1989).

    Article  ADS  Google Scholar 

  69. S.-C. Zhang, Int. J. Mod. Phys. B 6:25 (1992).

    Article  ADS  Google Scholar 

  70. F. Wilczek. “Fractional Statistics and Anyon Superconductivity,” World Scientific, Singapore (1990).

    Google Scholar 

  71. D. P. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53:722 (1984).

    Article  ADS  Google Scholar 

  72. B. Widom, J. Chem. Phys. 43:3892 (1965); 43:3898 (1965).

    Article  ADS  Google Scholar 

  73. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. FisherPhys. Rev. B 40:546 (1989).

    Article  ADS  Google Scholar 

  74. J. A. Hertz, Phys. Rev. B 14:1165 (1976).

    Article  ADS  Google Scholar 

  75. I. Affleck, Phys. Rev. B 41:6697 (1990).

    Article  ADS  Google Scholar 

  76. T. R. Kirkpatrick, and D. Belitz, Phys. Rev. Lett. 76:2571 (1996).

    Article  ADS  Google Scholar 

  77. M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett. 64:587 (1990).

    Article  ADS  Google Scholar 

  78. O. BergmanPhys. Rev. D 46:5474 (1992).

    Article  ADS  Google Scholar 

  79. G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. Lett. 65:1765 (1990).

    Article  ADS  Google Scholar 

  80. D. S. Fisher, and M. P. A. Fisher, Phys. Rev. Lett. 61:1847 (1988).

    Article  ADS  Google Scholar 

  81. S. Coleman, and B. Hill, Phys. Lett. B 159:184 (1985).

    Article  ADS  Google Scholar 

  82. J. D. Lykken, J. Sonneschein, and N. Weiss, Int. J. Mod. Phys. A 6:1335 (1991).

    Article  ADS  Google Scholar 

  83. G. Lozano, Phys. Lett. B 283:70 (1992); O. Bergman, and G. Lozano, Ann. Phys. (N.Y.) 229:416 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  84. F. D. M. Haldane, Phys. Rev. Lett. 51:605 (1983); B. I. Halperin, Phys. Rev. Lett. 52:1583 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  85. A. F. Hebard, and M. A. Paalanen, Hell“. Phys. Act. 65:197 (1992).

    Google Scholar 

  86. S. N. Dorogovtsev, Phys. Lett. A 76:169 (1980).

    Article  ADS  Google Scholar 

  87. E. R. Korutcheva, and D. I. Uzunov, Phys. Lett. A 106:175 (1984).

    Article  ADS  Google Scholar 

  88. G. Grinstein, and A. Luther, Phys. Rev. B 13:1329 (1976).

    Article  ADS  Google Scholar 

  89. T. C. Lubensky, Phys. Rev. B 11:3573 (1975).

    Article  ADS  Google Scholar 

  90. For a review see, for example, J. A. Hertz, Physica Scripta T 10:1 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  91. P. B. Weichman and K. Kim, Phys. Rev. B 40:813 (1989).

    Article  ADS  Google Scholar 

  92. J. Schwinger, Phys. Rev. 82:664 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. M. P. A. Fisher, Phys. Rev. Lett. 65:923 (1990).

    Article  ADS  Google Scholar 

  94. A. Yazdani, and A. Kapitulnik, Phys. Rev. Lett. 74:3037 (1995).

    Article  ADS  Google Scholar 

  95. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42:637 (1979).

    Article  Google Scholar 

  96. H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61:1294 (1988).

    Article  ADS  Google Scholar 

  97. H. P. Wei, L. W. Engel, and D. C. TsuiPhys. Rev. B 50:14609 (1994).

    Article  ADS  Google Scholar 

  98. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 50:8039 (1994); S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. 51:7038 (1995).

    Google Scholar 

  99. S. V. Kravchenko, D. Simonian, M. P. Sarachik, W. E. Mason, and J. E. Furneau x, Phys. Rev. Lett. 77:4938 (1996).

    Article  ADS  Google Scholar 

  100. D. Simonian, S. V. Kravchenko, and M. P. Sarachik, e-print cond-mat/9704071 (1997).

    Google Scholar 

  101. D. Popovíc, A. B. Fowler, and S. Washburn, e-print cond-mat/9704249 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schakel, A.M.J. (1999). Quantum Phase Transitions in 2d Quantum Liquids. In: Shopova, D.V., Uzunov, D.I. (eds) Correlations, Coherence, and Order. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4727-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4727-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7142-7

  • Online ISBN: 978-1-4615-4727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics