Skip to main content

Triple Differential Cross Sections for the Electron Impact Ionization of Helium, Neon and Argon From 0.1 To 1 Kev. Theory and Experiment Compared

  • Chapter
New Directions in Atomic Physics

Abstract

The triple differential cross section (TDCS) for electron impact ionization of atoms is proportional to the momentum density of the ejected electron under conditions when the colliding electrons can be considered to be free and the interactions between the incident, scattered and ejected electrons with the residual ion can be neglected. These are the conditions of the plane wave impulse approximation (PWIA). Under such circumstances, the measured “momentum densities” can be used to investigate single electron atomic wave functions and correlate these with the chemical and physical properties of the atoms. For these studies to be meaningful, the data should have a relative precision of 5 to 10%, (see for example the discussion of experimental precision in (e, 2e) collisions by Moore et al.1) To attain this degree of precision at incident electron energies of 1 keV or greater, the typical energies for such experiments, requires data acquisition times of several hours to days with current technologies. An alternative is to decrease the incident energy in order to increase the absolute value of the TDCS. While this is an attractive alternative, it is essential to recognize that as the incident energy is decreased the interactions between the incident, scattered and ejected electrons and the residual ion become relatively more important, until the point is reached where the TDCS is not even approximately proportional to the single electron momentum density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. H. Moore, J. A. Tossell, M. A. Coplan, J. W. Cooper, and J. P. Doering, Knockout reactions to study atomic and molecular electronic Structure: the future, (e, 2e) and Related Processes, C. T. Whelan, H. R. J. Walters, A. Lahmam-Bennani, and J. Ehrhardt, eds., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 414, Kluwer, Dordecht (1993), p. 91.

    Google Scholar 

  2. U. Arnaldi, A. Egidi, R. Marconero, and G. Pizzella, 1969, Use of a two channeltron coincidence in a new line of research in atomic physics, Rev. Sci. Instr. 40:1001.

    Article  ADS  Google Scholar 

  3. R. Camilloni, A. Giardini-Guidoni, R. Tiribelli, and G. Stefani, 1972, Coincidence measurements of quasifree scattering of 9-keV electrons on K and L shells of carbon, Phys. Rev. Lett. 29:618.

    Article  ADS  Google Scholar 

  4. E. Weigold, S. T. Hood, and P. J. O. Teubner, 1973, Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon, Phys. Rev. Lett. 30:475.

    Article  ADS  Google Scholar 

  5. I. E. McCarthy and E. Weigold, 1976, (e, 2e) spectroscopy, 27C:275; I. E. McCarthy and E. Weigold, 1988, Wavefunction mapping in collision experiments, Phys. Rep., Rep. Prog. Phys., 51:301.

    Google Scholar 

  6. E. Weigold, 1990, Electron-impact ionization ((e, 2e)) studies of atoms — some recent developments, Aust. J. Phys., 43:543.

    ADS  Google Scholar 

  7. E. Weigold and I. E. McCarthy, 1978, (e, 2e) collisions, Adv. At. Mol. Phys., 14:127.

    Article  ADS  Google Scholar 

  8. M. A. Coplan, J. H. Moore, and J. P. Doering, 1994, (e, 2e) spectroscopy, Rev. Mod. Phys., 66:985.

    Article  ADS  Google Scholar 

  9. C. E. Brion, Molecular (e, 2e) collisions — present status and future prospects for electron momentum spectroscopy, Proceedings of the 18th International Conference on the Physics of Electronic and Atomic Collisions, AIP Conference Proceedings 295, T. Anderson, B. Fastrup, F. Folkmann, H. Knudsen, N. Andersen, eds., AIP Press, New York (1995), p. 350.

    Google Scholar 

  10. J. J. Neville, Y. Zheng, B. P. Hollebone, N. Cann, C. E. Brion, C. K. Kim, and S. Wolf, 1996, EMS studies of larger molecules of chemical and biochemical interest, Can. J. Phys., 74:773.

    Article  ADS  Google Scholar 

  11. Y. Zheng, J. J. Neville, and C. E. Brion, 1995, Imaging the electron density in the highest occupied molecular orbital of glycine, Science, 270:786.

    Article  ADS  Google Scholar 

  12. J. P. D. Cook, I. E. McCarthy, A. T. Stelbovics, and E. Weigold, 1984, Noncoplanar symmetric (e, 2e) momentum profile measurements for helium: an accurate test of helium wave functions, J. Phys. B.At. Mol. Opt. Phys., 17:2339; J. P. D. Cook, J. Mitroy, and E. Weigold, 1984, Direct observations of relativistic effects in single-electron momentum distributions in xenon outer shells, Phys. Rev. Lett., 52:1116; J. Lower and E. Weigold, 1989, Improved techniques in multiparameter coincidence experiments, J. Phys. E, 22:421; E. Weigold, 1990, Recent developments in electron momentum spectroscopy of atoms and molecules, J. Electron Spectrosc. Relat. Phenom., 51:629; P. Hayes, M. A. Bennett, J. Flexman, and J. F. Williams, 1988, Position sensitive detectors in (e, 2e) coincidence measurements, Rev. Sei. Instrum., 59:2445.

    Article  ADS  Google Scholar 

  13. R. R. Goruganthu, M. A. Coplan, J. H. Moore, and J. A. Moore, and J. A. Tossell, 1988, (e, 2e) momentum spectroscopic study of the interaction of-CHin3} and-CF3 groups with the carbon-carbon triple bond}, J. Chem. Phys., 89:25

    Article  ADS  Google Scholar 

  14. E. Clementi and C. Roetti, 1974, Roothaan-Hartree-Fock atomic wavefunctions, Atomic and Nuclear Data Tables, 14:177.

    Article  ADS  Google Scholar 

  15. T. Rös ei, J. Röd er. L. Frost, K. Jung, H. Ehrhardt, S. Jones, and D. H. Madison, 1992, Absolute triple differential cross section for ionization of helium near threshold, Phys. Rev. A, 46:2539.

    Article  ADS  Google Scholar 

  16. J. B. Furness and I. E. McCarthy, 1973, Semiphenomenological optical model for electron scattering on atoms, J. Phys. B: At. Mol. Opt. Phys., 6:2280.

    Article  ADS  Google Scholar 

  17. D. H. Madison, V. D. Kravtsov, S. Jones and R. P. McEachran, 1996, Fine-structure effect for (e, 2e) collisions}, Phys. Rev. A, 53:2399.

    Article  ADS  Google Scholar 

  18. C. Froese Fischer, 1972, A multi-configuration Hartree-Fock program with improved stability, Comput. Phys. Commun., 4:107.

    Article  ADS  Google Scholar 

  19. I. E. McCarthy and J. Mitroy, 1986, Distorted wave impulse approximation for symmetric (e, 2e) measurements in helium, Phys. Rev. A, 34:4426.

    Article  ADS  Google Scholar 

  20. A. J. Dixon, I. E. McCarthy, C. J. Noble, and E. Weigold, 1978, Factorized distorted-wave approximation for the (e, 2e) reaction on atoms: noncoplanar symmetric geometry, Phys. Rev. A, 17:597.

    Article  ADS  Google Scholar 

  21. K. T. Leung and C. E. Brion, 1983, Experimental investigation of the valence orbital momentum distributions and ionization energies of the noble gases by binary (e, 2e) spectroscopy, Chem. Phys., 82:87.

    Article  ADS  Google Scholar 

  22. I. E. McCarthy and E. Weigold, 1985, Noncoplanar symmetric (e, 2e) reaction on argon}, Phys. Rev. A, 31:160.

    Article  ADS  Google Scholar 

  23. S. T. Hood, I. E. McCarthy, P. J. O. Teubner and E. Weigold, 1973, Angular correlation for (e, 2e) reactions on atoms}, Phys. Rev. A, 8:2494.

    Article  ADS  Google Scholar 

  24. E. Weigold, S. T. Hood, and P. J. O. Teubner, 1973, Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon, Phys. Rev. Lett., 30:475.

    Article  ADS  Google Scholar 

  25. P. Bickert, W. Hink, C. Dal Cappello, and A. Lahmam-Bennani, 1991, Triple differential cross section of single Ar (2p) ionization by electron impact in the keV region, J. Phys. B: At. Mol. Opt. Phys., 24:4603.

    Article  ADS  Google Scholar 

  26. X. Zhang, C. T. Whelan, H. R. J. Walters, R. J. Allan, P. Bickert, W. Hink, and S. Schoenberger, 1992, (e, 2e) cross sections for inner-shell ionization of argon and neon, J. Phys. B: At. Mol. Opt. Phys., 25:4325.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinkás, A.A. et al. (1999). Triple Differential Cross Sections for the Electron Impact Ionization of Helium, Neon and Argon From 0.1 To 1 Kev. Theory and Experiment Compared. In: Whelan, C.T., Dreizler, R.M., Macek, J.H., Walters, H.R.J. (eds) New Directions in Atomic Physics. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4721-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4721-1_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7139-7

  • Online ISBN: 978-1-4615-4721-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics